Abstract

The fact that one can associate a finite monoid with universal properties to each language recognised by an automaton is central to the solution of many practical and theoretical problems in automata theory. It is particularly useful, via the advanced theory initiated by Eilenberg and Reiterman, in separating various complexity classes and, in some cases it leads to decidability of such classes. In joint work with Jean-Éric Pin and Serge Grigorieff we have shown that this theory may be seen as a special case of Stone duality for Boolean algebras extended to a duality between Boolean algebras with additional operations and Stone spaces equipped with Kripke style relations. This is a duality which also plays a fundamental role in other parts of the foundations of computer science, including in modal logic and in domain theory. In this talk I will give a general introduction to Stone duality and explain what this has to do with the connection between regular languages and monoids.

Keywords

Tral Aceto 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S.: Domain Theory in Logical Form. Ann. Pure Appl. Logic 51, 1–77 (1991)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  3. 3.
    Eilenberg, S.: Automata, languages, and machines, vol. B. Academic Press (Harcourt Brace Jovanovich Publishers), New York (1976)MATHGoogle Scholar
  4. 4.
    Esakia, L.L.: Topological Kripke models. Soviet Math. Dokl. 15, 147–151 (1974)MATHGoogle Scholar
  5. 5.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)MATHGoogle Scholar
  6. 6.
    Gehrke, M.: Stone duality and the recognisable languages over an algebra. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 236–250. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Gehrke, M., Grigorieff, S., Pin, J.-É.: Duality and equational theory of regular languages. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 246–257. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Goldblatt, R.: Varieties of complex algebras. Ann. Pure App. Logic 44, 173–242 (1989)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Pin, J.-E.: Profinite methods in automata theory. In: Albers, S., Marion, J.-Y. (eds.) 26th International Symposium on Theoretical Aspects of Computer Science, STACS 2009, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, pp. 31–50 (2009)Google Scholar
  10. 10.
    Pippenger, N.: Regular languages and Stone duality. Theory Comput. Syst. 30(2), 121–134 (1997)MathSciNetMATHGoogle Scholar
  11. 11.
    Reiterman, J.: The Birkhoff theorem for finite algebras. Algebra Universalis 14(1), 1–10 (1982)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inform. Control 8, 190–194 (1965)MATHCrossRefGoogle Scholar
  13. 13.
    Stone, M.: The theory of representations for Boolean algebras. Trans. Amer. Math. Soc. 40, 37–111 (1936)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2011

Authors and Affiliations

  • Mai Gehrke
    • 1
  1. 1.Radboud University NijmegenThe Netherlands

Personalised recommendations