Solving Analytic Differential Equations in Polynomial Time over Unbounded Domains

  • Olivier Bournez
  • Daniel S. Graça
  • Amaury Pouly
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6907)

Abstract

In this paper we consider the computational complexity of solving initial-value problems defined with analytic ordinary differential equations (ODEs) over unbounded domains of ℝn and ℂn, under the Computable Analysis setting. We show that the solution can be computed in polynomial time over its maximal interval of definition, provided it satisfies a very generous bound on its growth, and that the function admits an analytic extension to the complex plane.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ko, K.I.: Computational Complexity of Real Functions. Birkhäuser, Basel (1991)Google Scholar
  2. 2.
    Shannon, C.E.: Mathematical theory of the differential analyzer. J. Math. Phys. 20, 337–354 (1941)MathSciNetMATHGoogle Scholar
  3. 3.
    Bush, V.: The differential analyzer. A new machine for solving differential equations. J. Franklin Inst. 212, 447–488 (1931)Google Scholar
  4. 4.
    Graça, D.S., Costa, J.F.: Analog computers and recursive functions over the reals. J. Complexity 19(5), 644–664 (2003)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Graça, D., Zhong, N., Buescu, J.: Computability, noncomputability and undecidability of maximal intervals of IVPs. Trans. Amer. Math. Soc. 361(6), 2913–2927 (2009)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Collins, P., Graça, D.S.: Effective computability of solutions of differential inclusions — the ten thousand monkeys approach. Journal of Universal Computer Science 15(6), 1162–1185 (2009)MathSciNetMATHGoogle Scholar
  7. 7.
    Pour-El, M.B., Richards, J.I.: A computable ordinary differential equation which possesses no computable solution. Ann. Math. Logic 17, 61–90 (1979)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Demailly, J.-P.: Analyse Numérique et Equations Différentielles. Presses Universitaires de Grenoble (1991)Google Scholar
  9. 9.
    Smith, W.D.: Church’s thesis meets the N-body problem. Applied Mathematics and Computation 178(1), 154–183 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, Heidelberg (2001)MATHGoogle Scholar
  11. 11.
    Ruohonen, K.: An effective Cauchy-Peano existence theorem for unique solutions. Internat. J. Found. Comput. Sci. 7(2), 151–160 (1996)MATHCrossRefGoogle Scholar
  12. 12.
    Kawamura, A.: Lipschitz continuous ordinary differential equations are polynomial-space complete. In: 2009 24th Annual IEEE Conference on Computational Complexity, pp. 149–160. IEEE, Los Alamitos (2009)CrossRefGoogle Scholar
  13. 13.
    Müller, N., Moiske, B.: Solving initial value problems in polynomial time. In: Proc. 22 JAIIO - PANEL 1993, Part 2, pp. 283–293 (1993)Google Scholar
  14. 14.
    Müller, N.T., Korovina, M.V.: Making big steps in trajectories. Electr. Proc. Theoret. Comput. Sci. 24, 106–119 (2010)CrossRefGoogle Scholar
  15. 15.
    Birkhoff, G., Rota, G.C.: Ordinary Differential Equations, 4th edn. John Wiley, Chichester (1989)Google Scholar
  16. 16.
    Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)MATHGoogle Scholar
  17. 17.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. (Ser.2–42), 230–265 (1936)Google Scholar
  18. 18.
    Grzegorczyk, A.: On the definitions of computable real continuous functions. Fund. Math. 44, 61–71 (1957)MathSciNetMATHGoogle Scholar
  19. 19.
    Lacombe, D.: Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles III. C. R. Acad. Sci. Paris 241, 151–153 (1955)Google Scholar
  20. 20.
    Weihrauch, K.: Computable Analysis: an Introduction. Springer, Heidelberg (2000)MATHGoogle Scholar
  21. 21.
    Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Heidelberg (1989)MATHGoogle Scholar
  22. 22.
    Ko, K.I., Friedman, H.: Computational complexity of real functions. Theoret. Comput. Sci. 20, 323–352 (1982)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Müller, N.T.: Uniform computational complexity of taylor series. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 435–444. Springer, Heidelberg (1987)Google Scholar
  24. 24.
    Graça, D.S., Campagnolo, M.L., Buescu, J.: Computability with polynomial differential equations. Adv. Appl. Math. 40(3), 330–349 (2008)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2011

Authors and Affiliations

  • Olivier Bournez
    • 1
  • Daniel S. Graça
    • 2
    • 3
  • Amaury Pouly
    • 4
  1. 1.Ecole Polytechnique, LIXPalaiseau CedexFrance
  2. 2.CEDMES/FCTUniversidade do Algarve, C. GambelasFaroPortugal
  3. 3.SQIG /Instituto de TelecomunicaçõesLisbonPortugal
  4. 4.Ecole Normale Supérieure de LyonFrance

Personalised recommendations