Graphene Nanoelectronics pp 435-464

Part of the NanoScience and Technology book series (NANO)

Graphene Oxide: Synthesis, Characterization, Electronic Structure, and Applications



While graphite oxide was first identified in 1855 [1, 2], the recent discovery of stable graphene sheets has led to renewed interest in the chemical structure and potential applications of graphene oxide sheets. These structures have several physical properties that could aid in the large scale development of a graphene electronics industry. Depending on the degree of oxidization, graphene oxide layers can be either semiconducting or insulating and provide an important complement to metallic graphene layers. In addition, the electronic and optical properties of these films can be controlled by the selective removal or addition of oxygen. For example, selective oxidationof graphene sheets could lead to electronic circuit fabrication on the scale of a single atomic layer. Graphene oxide is also dispersible in water and other solvents and this provides a facile route for graphene deposition on a wide range of substrates for macroelectronics applications. Although graphite oxide has been known for roughly 150 years, key questions remain in regards to its chemical structure, electronic properties, and fabrication. Answering these issues has taken on special urgency with the development of graphene electronics. In this chapter, we will provide an overview of the field with special focus on synthesis, characterization, and first principles analysis of bonding and electronic structures. Finally, we will also address some of the most promising applications for graphene oxide in electronics and other industries.


  1. 1.
    B.C. Brodie, Ann. Chim. Phys. 45, 351 (1855)Google Scholar
  2. 2.
    B.C. Brodie, Phil. Trans. R. Soc. Lond. 149, 249 (1859)CrossRefGoogle Scholar
  3. 3.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    M.Y. Han, B. Ozyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature 459, 820 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, P.M. Ajayan, Nat. Mater. 9, 430 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312, 1191 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science 324, 1312 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457, 706 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    A. Lerf, H. He, M. Forster, J. Klinowski, J. Phys. Chem. B 102, 4477 (1998)CrossRefGoogle Scholar
  12. 12.
    D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010)CrossRefGoogle Scholar
  13. 13.
    O.C. Compton, S.T. Nguyen, Small 6, 711 (2010)CrossRefGoogle Scholar
  14. 14.
    U. Hofmann, R. Holst, Ber. Dtsch. Chem. Ges. B 72, 754 (1939)CrossRefGoogle Scholar
  15. 15.
    G. Ruess, Monatsh. Chem 76, 381 (1946)CrossRefGoogle Scholar
  16. 16.
    T. Nakajima, A. Mabuchi, R. Hagiwara, Carbon 26, 357 (1988)CrossRefGoogle Scholar
  17. 17.
    D. Pandey, R. Reifenberger, R. Piner, Surf. Sci. 602, 1607 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis, I. Dekany, Chem. Mater. 18, 2740 (2006)CrossRefGoogle Scholar
  19. 19.
    W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, Nature Chem. 1, 403 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    L. Staudenmaier, Ber. Dtsch. Chem. Ges. 31, 1481 (1898)CrossRefGoogle Scholar
  21. 21.
    W.S. Hummers, U.S. Patent 2,798,878, 1957Google Scholar
  22. 22.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  23. 23.
    N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinsky, Chem. Mater. 11, 771 (1999)CrossRefGoogle Scholar
  24. 24.
    M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Carbon 42, 2929 (2004)Google Scholar
  25. 25.
    J.A. Johnson, C.J. Benmore, S. Stankovich, R.S. Ruoff, Carbon 47, 2239 (2009)CrossRefGoogle Scholar
  26. 26.
    C. Petit, M. Seredych, T.J. Bandosz, J. Mater. Chem. 19, 9176 (2009)CrossRefGoogle Scholar
  27. 27.
    H.P. Boehm, W. Scholz, Justus Liebigs Ann. Chem. 691, 1 (1965)CrossRefGoogle Scholar
  28. 28.
    H.K. Jeong, Y.P. Lee, R.J.W.E. Lahaye, M.H. Park, K.H. An, I.J. Kim, C.W. Yang, C.Y. Park, R.S. Ruoff, Y.H. Lee, J. Am. Chem. Soc. 130, 1362 (2008)CrossRefGoogle Scholar
  29. 29.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)CrossRefGoogle Scholar
  30. 30.
    Z. Luo, Y. Lu, L.A. Somers, A.T.C. Johnson, J. Am. Chem. Soc. 131, 898 (2009)CrossRefGoogle Scholar
  31. 31.
    S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Carbon 44, 3342 (2006)CrossRefGoogle Scholar
  32. 32.
    H.P. Boehm, A. Clauss, G.O. Fischer, U. Hofmann, Z. Naturforschung 17b, 150 (1962)Google Scholar
  33. 33.
    J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, J. Huang, J. Am Chem. Soc. 132, 8180 (2010)CrossRefGoogle Scholar
  34. 34.
    X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, W.A. de Heer, Phys. Rev. Lett. 101, 026801 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Nature 458, 872 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    A.L. Higginbotham, D.V. Kosynkin, A. Sinitskii, Z. Sun, J.M. Tour, ACS Nano 4, 2059 (2010)CrossRefGoogle Scholar
  37. 37.
    Z. Wei, D. Wang, S. Kim, S.Y. Kim, Y. Hu, M.K. Yakes, A.R. Laracuente, Z. Dai, S.R. Marder, C. Berger, W.P. King, W.A. de Heer, P.E. Sheenan, E. Riedo, Science 328, 1373 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    H.C. Schnieep, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, J. Phys. Chem. B 110, 8535 (2006)Google Scholar
  39. 39.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguygen, R.S. Ruoff, Carbon 45, 1558 (2007)CrossRefGoogle Scholar
  40. 40.
    R. Ishikawa, M. Bando, Y. Morimoto, S.Y. Park, A. Sandhu, Jpn. J. Appl. Phys. 49, 06GC02 (2010)Google Scholar
  41. 41.
    G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008)CrossRefGoogle Scholar
  42. 42.
    G.K. Ramesha, S. Sampath, J. Phys. Chem. C 113, 7985 (2009)CrossRefGoogle Scholar
  43. 43.
    G. Williams, B. Seger, P.V. Kamat, ACS Nano 2, 1487 (2008)CrossRefGoogle Scholar
  44. 44.
    L.J. Cote, R. Cruz-Silva, J. Huang, J. Am. Chem. Soc. 131, 11027 (2009)CrossRefGoogle Scholar
  45. 45.
    E.C. Salas, Z. Sun, A. Luttge, J.M. Tour, ACS Nano 4, 4852 (2010)CrossRefGoogle Scholar
  46. 46.
    X. Gao, J. Jang, S. Nagase, J. Phys. Chem. C 114, 832 (2010)CrossRefGoogle Scholar
  47. 47.
    V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, Nat. Nanotech. 4, 29 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, R.S. Ruoff, Carbon 47, 145 (2009)CrossRefGoogle Scholar
  49. 49.
    D. Ogrin, J. Chattopadhyay, A.K. Sadana, W.E. Billups, A.R. Barron, J. Am. Chem. Soc. 128, 11322 (2006)CrossRefGoogle Scholar
  50. 50.
    J. Chattopadhyay, A. Mukherjee, C.E. Hamilton, J. Kang, S. Chakraborty, W. Guo, K.F. Kelly, A.R. Barron, W.E. Billups, J. Am. Chem. Soc. 130, 5414 (2008)CrossRefGoogle Scholar
  51. 51.
    A. Bagri, R. Grantab, N.V. Medhekar, V.B. Shenoy, J. Phys. Chem. C 114, 12053 (2010)CrossRefGoogle Scholar
  52. 52.
    A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Nat. Chem. 2, 581 (2010)CrossRefGoogle Scholar
  53. 53.
    A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, J. Phys. Chem. A 105, 9396 (2001)CrossRefGoogle Scholar
  54. 54.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005)ADSCrossRefGoogle Scholar
  56. 56.
    I. Jung, M. Pelton, R. Piner, D.A. Dikin, S. Stankovich, S. Watcharotone, M. Hausner, R.S. Ruoff, Nano Lett. 7, 3569 (2007)ADSCrossRefGoogle Scholar
  57. 57.
    S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, F. Beltram, Nano Lett. 7, 2707 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    J. Kim, F. Kim, J. Huang, Mater. Today 13, 28 (2010)CrossRefGoogle Scholar
  59. 59.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, I.A. Kinloch, L. Gong, Z. Liu, K. Suenaga, J.P. Rourke, S.J. York, J. Sloan, ACS Nano 3, 2547 (2009)CrossRefGoogle Scholar
  61. 61.
    L. Reimer, H. Kohl, Transmission Electron Microscope: Physics of Image Formation, 5th edn. (Springer, Berlin, Heidelberg, New York, 2008)Google Scholar
  62. 62.
    C. Gomez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser, Nano Lett. 10, 1144 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    A.V. Crewe, J. Wall, J. Langmore, Science 168, 1338 (1970)ADSCrossRefGoogle Scholar
  64. 64.
    P.E. Batson, N. Dellby, O.L. Krivanek, Nature 418, 617 (2002)ADSCrossRefGoogle Scholar
  65. 65.
    P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A.R. Lupini, A. Borisevich, J.W.H. Sides, S.J. Pennycook, Science 305, 1741 (2004)CrossRefGoogle Scholar
  66. 66.
    K.A. Mkhoyan, P.E. Batson, J. Cha, W.J. Schaff, J. Silcox, Science 312, 1354 (2006)CrossRefGoogle Scholar
  67. 67.
    P.M. Voyles, D.A. Muller, J.L. Grazul, P.H. Citrin, H.J.L. Gossmann, Nature 416, 826 (2002)ADSCrossRefGoogle Scholar
  68. 68.
    E. Abe, S.J. Pennycook, A.P. Tsai, Nature 421, 347 (2003)ADSCrossRefGoogle Scholar
  69. 69.
    M.H. Gass, U. Bangert, A.L. Bleloch, P. Wang, R.R. Nair, A.K. Geim, Nat. Nanotechnol. 3, 676 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    T. Eberlein, U. Bangert, R.R. Nair, R. Jones, M. Gass, A.L. Bleloch, K.S. Novoselov, A. Geim, P.R. Briddon, Phys. Rev. B 77, 233406 (2008)ADSCrossRefGoogle Scholar
  71. 71.
    K.A. Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G. Eda, C. Mattevi, S. Miller, M. Chhowalla, Nano Lett. 9, 1058 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    E.J. Kirkland, Advanced Computing in Electron Microscopy (Plenum Press, NY, USA, 1998)Google Scholar
  73. 73.
    R.F. Egerton, Electron Energy Loss Spectroscopy in the Electron Microscope, 2nd edn. (Plenum Press, NY, USA, 1996)Google Scholar
  74. 74.
    D.A. Muller, D.J. Singh, J. Silcox, Phys. Rev. B 57, 8181 (1998)ADSCrossRefGoogle Scholar
  75. 75.
    K.A. Mkhoyan, J. Silcox, E.S. Alldredge, N.W. Ashcroft, H. Lu, W.J. Schaff, L.F. Eastman, Appl. Phys. Lett. 82, 1407 (2003)ADSCrossRefGoogle Scholar
  76. 76.
    G. Binnig, C.F. Quate, C. Gerber, Phys. Rev. Lett. 56, 930 (1986)ADSCrossRefGoogle Scholar
  77. 77.
    F.J. Giessibl, Science 267, 68 (1995)ADSCrossRefGoogle Scholar
  78. 78.
    S. Morita, R. Wiesendanger, E. Meyer, Noncontact Atomic Force Microscopy, 1st edn. (Springer, Berlin, Heidelberg, New York, 2002)CrossRefGoogle Scholar
  79. 79.
    F.J. Giessibl, Rev. Mod. Phys. 75, 949 (2003)ADSCrossRefGoogle Scholar
  80. 80.
    I. Jung, M. Vaupel, M. Pelton, R. Piner, D.A. Dikin, S. Stankovich, J. An, R.S. Ruoff, J. Phys. Chem. C 112, 8499 (2008)CrossRefGoogle Scholar
  81. 81.
    A. Buchsteiner, A. Lerf, J. Pieper, J. Phys. Chem. B 110, 22328 (2006)CrossRefGoogle Scholar
  82. 82.
    G. Eda, M. Chhowalla, Nano Lett. 9, 814 (2009)ADSCrossRefGoogle Scholar
  83. 83.
    S. Pang, H.N. Tsao, X. Feng, K. Mullen, Adv. Mater. 21, 3488 (2009)CrossRefGoogle Scholar
  84. 84.
    D. Briggs, M.P. Seah, Practical Surface Analysis, Auger and X-ray Photoelectron Spectroscopy, 2nd edn. (Wiley, NY, USA, 1996)Google Scholar
  85. 85.
    B.V. Crist, Handbook of Monochromatic XPS Spectra, 1st edn. (Wiley, NY, USA, 2000)Google Scholar
  86. 86.
    C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Adv. Funct. Mater. 19, 2577 (2009)CrossRefGoogle Scholar
  87. 87.
    C. Hontoria-Lucas, A.J.L. Peinando, J.D.D. Lopez-Gonzalez, M.L. Rojas-Cervantes, R.M. Martin-Aranda, Carbon 33, 1585 (1995)CrossRefGoogle Scholar
  88. 88.
    D.Q. Yang, E. Sacher, Langmuir 22, 860 (2006)CrossRefGoogle Scholar
  89. 89.
    D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice Jr., R.S. Ruoff, Carbon 47, 145 (2008)CrossRefGoogle Scholar
  90. 90.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)ADSCrossRefGoogle Scholar
  91. 91.
    A. Gupta, G. Chen, P. Joshi, S. Tadigada, P.C. Eklund, Nano Lett. 6, 2667 (2006)ADSCrossRefGoogle Scholar
  92. 92.
    Z. Ni, Y. Wang, T. Yu, Z. Shen, Nano Res. 1, 273 (2008)CrossRefGoogle Scholar
  93. 93.
    F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)ADSCrossRefGoogle Scholar
  94. 94.
    C.Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.H. Tsai, L.J. Li, Chem. Mater. 21, 5674 (2009)CrossRefGoogle Scholar
  95. 95.
    S. Baroni, S. de Gironcoli, A.D. Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)ADSCrossRefGoogle Scholar
  96. 96.
    K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Nano Lett. 8, 36 (2008)Google Scholar
  97. 97.
    J.L. Li, K.N. Kudin, M.J. McAllister, R.K. Prud’homme, I.A. Aksay, R. Car, Phys. Rev. Lett. 96, 176101 (2006)Google Scholar
  98. 98.
    Z.S. Wu, W. Ren, L. Gao, B. Liu, J. Zhao, H.M. Cheng, Nano Res. 3, 16 (2010)CrossRefGoogle Scholar
  99. 99.
    Z. Li, W. Zhang, Y. Luo, J. Yang, J.G. Hou, J. Am. Chem. Soc. 131, 6320 (2009)CrossRefGoogle Scholar
  100. 100.
    J.A. Yan, L. Xian, M.Y. Chou, Phys. Rev. Lett. 103, 086802 (2009)ADSCrossRefGoogle Scholar
  101. 101.
    Z. Xu, K. Xue, Nanotechnology 21, 045704 (2010)ADSCrossRefGoogle Scholar
  102. 102.
    D.W. Boukhvalov, M.I. Katsnelson, J. Am. Chem. Soc. 130, 10697 (2008)CrossRefGoogle Scholar
  103. 103.
    J.T. Paci, T. Belytschko, G.C. Schatz, J. Phys. Chem. 111, 18099 (2007)Google Scholar
  104. 104.
    H.K. Jeong, M.H. Jin, K.P. So, S.C. Lim, Y.H. Lee, J. Phys. D: Appl. Phys. 42, 065418 (2009)ADSCrossRefGoogle Scholar
  105. 105.
    Z. Luo, P.M. Vora, E.J. Mele, A.T.C. Johnson, J.M. Kikkawa, Appl. Phys. Lett. 94, 111909 (2009)ADSCrossRefGoogle Scholar
  106. 106.
    G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Adv. Mater. 22, 505 (2010)CrossRefGoogle Scholar
  107. 107.
    J. Ito, J. Nakamura, A. Natori, J. Appl. Phys. 103, 113712 (2008)ADSCrossRefGoogle Scholar
  108. 108.
    A.B. Kaiser, C. Gomez-Navarro, R.S. Sundaram, M. Burghard, K. Kern, Nano Lett. 9, 1787 (2009)ADSCrossRefGoogle Scholar
  109. 109.
    G. Eda, C. Mattevi, H. Yamaguchi, H.K. Kim, M. Chhowalla, J. Phys. Chem. C 113, 15768 (2009)CrossRefGoogle Scholar
  110. 110.
    G. Eda, M. Chhowalla, Adv. Mater. 22, 2392 (2010)CrossRefGoogle Scholar
  111. 111.
    C. Gomez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Nano Lett. 7, 3499 (2007)ADSCrossRefGoogle Scholar
  112. 112.
    T. Kobayashi, N. Kimura, J. Chi, S. Hirata, D. Hobara, Small 6, 1210 (2010)CrossRefGoogle Scholar
  113. 113.
    D. Joung, A. Chunder, L. Zhai, S.I. Khondaker, Nanotechnology 21, 165202 (2010)ADSCrossRefGoogle Scholar
  114. 114.
    H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Y.H. Lee, Adv. Funct. Mater. 19, 1987 (2009)CrossRefGoogle Scholar
  115. 115.
    S. Wang, P.J. Chia, L.L. Chua, L.H. Zhao, R.Q. Png, S. Sivaramakrishnan, M. Zhou, R.G.S. Goh, R.H. Friend, A.T.S. Wee, P.K.H. Ho, Adv. Mater. 20, 3440 (2008)CrossRefGoogle Scholar
  116. 116.
    S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, I. Jung, G.H.B. Dommett, G. Evmenenko, S.E. Wu, S.F. Chen, C.P. Liu, S.T. Nguygen, R.S. Ruoff, Nano Lett. 7, 1888 (2007)ADSCrossRefGoogle Scholar
  117. 117.
    S.S. Li, K.H. Tu, C.C. Lin, C.W. Chen, M. Chhowalla, ACS Nano 4, 3169 (2010)CrossRefGoogle Scholar
  118. 118.
    V. Shrotriya, G. Li, Y. Yao, C.W. Chu, Y. Yang, Appl. Phys. Lett. 88, 073508 (2006)ADSCrossRefGoogle Scholar
  119. 119.
    M.D. Irwin, D.B. Buchholz, A.W. Bains, R.P.H. Chang, T.J. Marks, Proc. Natl. Acad. Sci. USA 105, 2783 (2008)ADSCrossRefGoogle Scholar
  120. 120.
    S. Wang, J. Pu, D.S.H. Chan, B.J. Cho, K.P. Loh, Appl. Phys. Lett. 96, 143109 (2010)ADSCrossRefGoogle Scholar
  121. 121.
    X.B. Lu, J.Y. Dai, Appl. Phys. Lett. 88, 113104 (2006)ADSCrossRefGoogle Scholar
  122. 122.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)ADSCrossRefGoogle Scholar
  123. 123.
    Y. Zhu, M.D. Stoller, W. Cai, A. Velamakanni, R.D. Piner, D. Chen, R.S. Ruoff, ACS Nano 4, 1227 (2010)CrossRefGoogle Scholar
  124. 124.
    Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Carbon 48, 2118 (2010)CrossRefGoogle Scholar
  125. 125.
    Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. (2010)Google Scholar
  126. 126.
    Y. Liu, D. Yu, C. Zeng, Z. Miao, L. Dai, Langmuir 26, 6158 (2010)CrossRefGoogle Scholar
  127. 127.
    J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheenan, Nano Lett. 8, 3137 (2008)ADSCrossRefGoogle Scholar
  128. 128.
    O.V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010)ADSCrossRefGoogle Scholar
  129. 129.
    T.L. Makarova, B. Sundqvist, R. Hohne, P. Esquinazi, Y. Kopelevich, P. Schaff, V. Dadydov, L.S. Kashevarova, A.V. Rakhmanina, Nature 413, 716 (2001)ADSCrossRefGoogle Scholar
  130. 130.
    T.L. Makarova, B. Sundqvist, R. Hohne, P. Esquinazi, Y. Kopelevich, P. Schaff, V. Dadydov, L.S. Kashevarova, A.V. Rakhmanina, Nature 440, 707 (2006)ADSCrossRefGoogle Scholar
  131. 131.
    P. Esquinazi, D. Spemann, R. Hohne, A. Setzer, K.H. Han, T. Butz, Phys. Rev. Lett. 91, 227201 (2003)ADSCrossRefGoogle Scholar
  132. 132.
    Y. Kopelevich, P. Esquinazi, J.H.S. Torres, S. Moehlecke, J. Low Temp. Phys. 119, 691 (2000)CrossRefGoogle Scholar
  133. 133.
    M. Wang, C.M. Li, New J. of Phys. 12, 083040 (2010)ADSCrossRefGoogle Scholar
  134. 134.
    Y.W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006a)ADSCrossRefGoogle Scholar
  135. 135.
    Y.W. Son, M.L. Cohen, S. Louie, Nature 444, 347 (2006b)ADSCrossRefGoogle Scholar
  136. 136.
    S.S. Rao, A. Stesmans, D.V. Kosynkin, A. Higginbotham, J.M. Tour, Arxiv 1006.4942, v1 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Cornell Nanoscale FacilityCornell UniversityIthacaUSA
  2. 2.Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA

Personalised recommendations