Temporal Knowledge for Timely Intelligence

  • Gerhard Weikum
  • Srikanta Bedathur
  • Ralf Schenkel
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 84)

Abstract

Knowledge bases about entities and their relationships are a great asset for business intelligence. Major advances in information extraction and the proliferation of knowledge-sharing communities like Wikipedia have enabled ways for the largely automated construction of rich knowledge bases. Such knowledge about entity-oriented facts can greatly improve the output quality and possibly also efficiency of processing business-relevant documents and event logs. This holds for information within the enterprise as well as in Web communities such as blogs.

However, no knowledge base will ever be fully complete and real-world knowledge is continuously changing: new facts supersede old facts, knowledge grows in various dimensions, and completely new classes, relation types, or knowledge structures will arise. This leads to a number of difficult research questions regarding temporal knowledge and the life-cycle of knowledge bases. This short paper outlines challenging issues and research opportunities, and provides references to technical literature.

Keywords

Information Extraction Temporal Knowledge Candidate Entity Rich Knowledge Base Open Information Extraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adar, E., Skinner, M., Weld, D.S.: Information Arbitrage across Multi-Lingual Wikipedia. In: WSDM 2009 (2009)Google Scholar
  2. 2.
    First Workshop on Automated Knowledge Base Construction, Grenoble (2010), http://akbc.xrce.xerox.com
  3. 3.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: A nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open Information Extraction from the Web. In: IJCAI 2007 (2007)Google Scholar
  5. 5.
    Banko, M., Etzioni, O.: Strategies for Lifelong Knowledge Extraction from the Web. In: Int. Conf. on Knowledge Capture (2007)Google Scholar
  6. 6.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. Int. J. Semantic Web Inf. Syst. 5(3) (2009)Google Scholar
  7. 7.
    Cafarella, M.J., Halevy, A.Y., Wang, D.Z., Wu, E., Zhang, Y.: WebTables: Exploring the Power of Tables on the Web. PVLDB 1(1) (2008)Google Scholar
  8. 8.
    Cafarella, M.J.: Extracting and Querying a Comprehensive Web Database. In: CIDR 2009 (2009)Google Scholar
  9. 9.
    Carlson, A., Betteridge, J., Wang, R.C., Hruschka Jr., E.R., Mitchell, T.M.: Coupled Semi-supervised Learning for Information Extraction. In: WSDM 2010 (2010)Google Scholar
  10. 10.
    Chang, M.-W., Ratinov, L.-A., Rizzolo, N., Roth, D.: Learning and Inference with Constraints. AAAI, Menlo Park (2008)Google Scholar
  11. 11.
    de Melo, G., Weikum, G.: MENTA: Inducing Multilingual Taxonomies from Wikipedia. In: CIKM 2010 (2010)Google Scholar
  12. 12.
    Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Li, F.-F.: ImageNet: A Large-scale Hierarchical Image Database. In: CVPR 2009 (2009)Google Scholar
  13. 13.
    Doan, A., Gravano, L., Ramakrishnan, R., Vaithyanathan, S. (eds.): Special Issue on Information Extraction, SIGMOD Record, vol. 37(4) (2008)Google Scholar
  14. 14.
    Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intelligence. Morgan & Claypool (2009)Google Scholar
  15. 15.
    Elbassuoni, S., Hose, K., Metzger, S., Schenkel, R.: ROXXI: Reviving Witness Documents to Explore Extracted Information. PVLDB 3(2) (2010)Google Scholar
  16. 16.
    Lenat, D.B.: CYC: A Large-Scale Investment in Knowledge Infrastructure. Commun. ACM 38(11) (1995)Google Scholar
  17. 17.
    Ling, X., Weld, D.S.: Temporal Information Extraction. AAAI, Menlo Park (2010)Google Scholar
  18. 18.
    Nakashole, N., Theobald, M., Weikum, G.: Find your Advisor: Robust Knowledge Gathering from the Web. In: WebDB 2010 (2010)Google Scholar
  19. 19.
    Ponzetto, S.P., Strube, M.: Deriving a Large-Scale Taxonomy from Wikipedia. AAAI, Menlo Park (2007)MATHGoogle Scholar
  20. 20.
    Preda, N., Kasneci, G., Suchanek, F.M., Neumann, T., Yuan, W., Weikum, G.: Active Knowledge: Dynamically Enriching RDF Knowledge Bases by Web Services. In: SIGMOD 2010 (2010)Google Scholar
  21. 21.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Englewood Cliffs (2010)MATHGoogle Scholar
  22. 22.
    Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a Core of Semantic Knowledge. In: WWW 2007 (2007)Google Scholar
  23. 23.
    Suchanek, F., Kasneci, G., Weikum, G.: YAGO: A Large Ontology from Wikipedia and WordNet. Journal of Web Semantics 6(39) (2008)Google Scholar
  24. 24.
    Suchanek, F., Sozio, M., Weikum, G.: SOFIE: a Self-Organizing Framework for Information Extraction. In: WWW 2009 (2009)Google Scholar
  25. 25.
    Talukdar, P.P., Pereira, F.: Experiments in Graph-based Semi-Supervised Learning Methods for Class-Instance Acquisition. In: ACL 2010 (2010)Google Scholar
  26. 26.
    Tandon, N., de Melo, G.: Information Extraction from Web-Scale N-Gram Data. In: SIGIR Workshop on Web N-Grams (2010)Google Scholar
  27. 27.
    Taneva, B., Kacimi, M., Weikum, G.: Gathering and Ranking Photos of Named Entities with High Precision, High Recall, and Diversity. In: WSDM 2010 (2010)Google Scholar
  28. 28.
    Verhagen, M., et al.: Automating Temporal Annotation with TARSQI. In: ACL 2005 (2005)Google Scholar
  29. 29.
    Wang, Y., Zhu, M., Qu, L., Spaniol, M., Weikum, G.: Timely YAGO: Harvesting, Querying, and Visualizing Temporal Knowledge from Wikipedia. In: EDBT 2010 (2010)Google Scholar
  30. 30.
    Wang, Y., Yahya, M., Theobald, M.: Time-aware Reasoning in Uncertain Knowledge Bases. In: VLDB Workshop on Management of Uncertain Data (2010)Google Scholar
  31. 31.
    Weikum, G., Kasneci, G., Ramanath, M., Suchanek, F.: Database and Information-Retrieval Methods for Knowledge Discovery. CACM 52(4) (2009)Google Scholar
  32. 32.
    Weikum, G., Theobald, M.: From information to Knowledge: Harvesting Entities and Relationships from Web Sources. In: PODS 2010 (2010)Google Scholar
  33. 33.
    Wick, M.L., McCallum, A., Miklau, G.: Scalable Probabilistic Databases with Factor Graphs and MCMC. PVLDB 3(1) (2010)Google Scholar
  34. 34.
    Wu, F., Weld, D.S.: Automatically Refining the Wikipedia Infobox Ontology. In: WWW 2008 (2008)Google Scholar
  35. 35.
    Zhu, J., Nie, Z., Liu, X., Zhang, B., Wen, J.-R.: StatSnowball: a Statistical Approach to Extracting Entity Relationships. In: WWW 2009 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gerhard Weikum
    • 1
  • Srikanta Bedathur
    • 1
  • Ralf Schenkel
    • 2
  1. 1.Max Planck Institute for InformaticsGermany
  2. 2.Saarland UniversitySaarbrueckenGermany

Personalised recommendations