The Effect of Homogeneity on the Complexity of k-Anonymity

  • Robert Bredereck
  • André Nichterlein
  • Rolf Niedermeier
  • Geevarghese Philip
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6914)


The NP-hard k-Anonymity problem asks, given an n ×m-matrix M over a fixed alphabet and an integer s > 0, whether M can be made k-anonymous by suppressing (blanking out) at most s entries. A matrix M is said to be k-anonymous if for each row r in M there are at least k–1 other rows in M which are identical to r. Complementing previous work, we introduce two new “data-driven” parameterizations for k-Anonymity—the number \({t_{\textrm{in}}}\) of different input rows and the number \(t_{\textrm{out}}\) of different output rows—both modeling aspects of data homogeneity. We show that k-Anonymity is fixed-parameter tractable for the parameter \({t_{\textrm{in}}}\), and it is NP-hard even for \({t_{\textrm{out}}} = 2\) and alphabet size four. Notably, our fixed-parameter tractability result implies that k-Anonymity can be solved in linear time when \({t_{\textrm{in}}}\) is a constant. Our results also extend to some interesting generalizations of k-Anonymity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, G., Feder, T., Kenthapadi, K., Khuller, S., Panigrahy, R., Thomas, D., Zhu, A.: Achieving anonymity via clustering. ACM Trans. Algorithms 6(3), 1–19 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu, A.: Anonymizing tables. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 246–258. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Blocki, J., Williams, R.: Resolving the complexity of some data privacy problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 393–404. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bonizzoni, P., DellaVedova, G., Dondi, R.: Anonymizing binary and small tables is hard to approximate. J. Comb. Optim. 22, 97–119 (2011)MathSciNetMATHGoogle Scholar
  5. 5.
    Bonizzoni, P., Della Vedova, G., Dondi, R., Pirola, Y.: Parameterized complexity of k-anonymity: Hardness and tractability. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460, pp. 242–255. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Bredereck, R., Nichterlein, A., Niedermeier, R., Philip, G.: Pattern-guided data anonymization and clustering. In: Proc. 36th MFCS. LNCS. Springer, Heidelberg (to appear, 2011)Google Scholar
  7. 7.
    Chakaravarthy, V.T., Pandit, V., Sabharwal, Y.: On the complexity of the k-anonymization problem. CoRR, abs/1004.4729 (2010)Google Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  9. 9.
    Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54, 86–95 (2011)CrossRefGoogle Scholar
  10. 10.
    Evans, P.A., Wareham, T., Chaytor, R.: Fixed-parameter tractability of anonymizing data by suppressing entries. J. Comb. Optim. 18(4), 362–375 (2009)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fard, A.M., Wang, K.: An effective clustering approach to web query log anonymization. In: Proc. SECRYPT, pp. 109–119. SciTePress (2010)Google Scholar
  12. 12.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)MATHGoogle Scholar
  13. 13.
    Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960)CrossRefGoogle Scholar
  14. 14.
    Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: A survey of recent developments. ACM Comput. Surv. 42(4), 14:1–14:53 (2010)Google Scholar
  15. 15.
    Johnson, D.S.: The NP-completeness column: An ongoing guide. J. Algorithms 8, 438–448 (1987)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Deconstructing intractability–A multivariate complexity analysis of interval constrained coloring. J. Discrete Algorithms 9, 137–151 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: Proc. 23rd ICDE, pp. 106–115. IEEE, Los Alamitos (2007)Google Scholar
  18. 18.
    Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: ℓ-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1, 52 (2007)CrossRefGoogle Scholar
  19. 19.
    Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: Proc. 23rd PODS, pp. 223–228. ACM, New York (2004)Google Scholar
  20. 20.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefMATHGoogle Scholar
  21. 21.
    Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proc. 27th STACS. LIPIcs, vol. 5, pp. 17–32. IBFI, Dagstuhl (2010)Google Scholar
  22. 22.
    Orlin, J.: A faster strongly polynomial minimum cost flow algorithm. In: Proc. 20th STOC, pp. 377–387. ACM, New York (1988)Google Scholar
  23. 23.
    Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. IJUFKS 10(5), 571–588 (2002)MathSciNetMATHGoogle Scholar
  24. 24.
    Sweeney, L.: k-anonymity: A model for protecting privacy. IJUFKS 10(5), 557–570 (2002)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Robert Bredereck
    • 1
  • André Nichterlein
    • 1
  • Rolf Niedermeier
    • 1
  • Geevarghese Philip
    • 2
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinGermany
  2. 2.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations