Advertisement

Virtual Substitution for SMT-Solving

  • Florian Corzilius
  • Erika Ábrahám
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6914)

Abstract

SMT-solving aims at deciding satisfiability for the existential fragment of a first-order theory. A SAT-solver handles the logical part of a given problem and invokes an embedded theory solver to check consistency of theory constraints. For efficiency, the theory solver should be able to work incrementally and generate infeasible subsets. Currently available decision procedures for real algebra – the first-order theory of the reals with addition and multiplication – do not exhibit these features. In this paper we present an adaptation of the virtual substitution method, providing these abilities.

Keywords

Decision Procedure Consistency Check Conjunction Node Side Condition Left Endpoint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bjo99]
    Bjorner, N.S.: Integrating Decision Procedures for Temporal Verification. PhD thesis, Stanford University (1999)Google Scholar
  2. [Bjo10]
    Bjørner, N.: Linear quantifier elimination as an abstract decision procedure. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 316–330. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. [BPT07]
    Bauer, A., Pister, M., Tautschnig, M.: Tool-support for the analysis of hybrid systems and models. In: DATE 2007, pp. 924–929. European Design and Automation Association (2007)Google Scholar
  4. [Bro03]
    Brown, C.W.: QEPCAD B: A program for computing with semi-algebraic sets using CADs. SIGSAM Bull. 37, 97–108 (2003)CrossRefzbMATHGoogle Scholar
  5. [CJ98]
    Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  6. [Cor11]
    Corzilius, F.: Virtual substitution in SMT solving. Master’s thesis, RWTH Aachen University (2011), http://www-i2.informatik.rwth-aachen.de/i2/publications/
  7. [DH88]
    Davenport, J.H., Heinz, J.: Real quantifier elimination is doubly exponential. Journal of Symbolic Computation 5, 29–35 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [dMB08]
    de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. [DS97]
    Dolzmann, A., Sturm, T.: REDLOG: Computer algebra meets computer logic. In: SIGSAM 1997, vol. 31, pp. 2–9 (1997)Google Scholar
  10. [DSW97]
    Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice (1997)Google Scholar
  11. [FHT+07]
    Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. Journal on Satisfiability, Boolean Modeling, and Computation 1, 209–236 (2007)zbMATHGoogle Scholar
  12. [KS08]
    Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  13. [PJ09]
    Passmore, G.O., Jackson, P.B.: Combined decision techniques for the existential theory of the reals. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) MKM 2009, Held as Part of CICM 2009. LNCS, vol. 5625, pp. 122–137. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. [Tar48]
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of California Press, Berkeley (1948)zbMATHGoogle Scholar
  15. [Wei88]
    Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic Computation 5, 3–27 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Wei98]
    Weispfenning, V.: A new approach to quantifier elimination for real algebra. In: Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and Monographs in Symbolic Computation, pp. 376–392. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Florian Corzilius
    • 1
  • Erika Ábrahám
    • 1
  1. 1.RWTH Aachen UniversityGermany

Personalised recommendations