Advertisement

Reactive Turing Machines

  • Jos C. M. Baeten
  • Bas Luttik
  • Paul van Tilburg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6914)

Abstract

We propose reactive Turing machines (RTMs), extending classical Turing machines with a process-theoretical notion of interaction. We show that every effective transition system is simulated modulo branching bisimilarity by an RTM, and that every computable transition system with a bounded branching degree is simulated modulo divergence-preserving branching bisimilarity. We conclude from these results that the parallel composition of (communicating) RTMs can be simulated by a single RTM. We prove that there exist universal RTMs modulo branching bisimilarity, but these essentially employ divergence to be able to simulate an RTM of arbitrary branching degree. We also prove that modulo divergence-preserving branching bisimilarity there are RTMs that are universal up to their own branching degree. Finally, we establish a correspondence between RTMs and the process theory \(\ensuremath{\mathrm{\ensuremath{\mathrm{TCP}}_{\ensuremath{\ensuremath{\mathalpha{\tau}}}}}}\).

Keywords

Transition System Turing Machine Parallel Composition Label Transition System Process Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra (Equational Theories of Communicating Processes). Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: On the consistency of Koomen’s fair abstraction rule. Theoretical Computer Science 51, 129–176 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baeten, J.C.M., Cuijpers, P.J.L., Luttik, B., van Tilburg, P.J.A.: A Process-Theoretic Look at Automata. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 1–33. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Baeten, J.C.M., Luttik, B., van Tilburg, P.J.A.: Reactive Turing machines. CoRR, abs/1104.1738 (2011)Google Scholar
  5. 5.
    Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction. Theoretical Computer Science 37, 77–121 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Blass, A., Gurevich, Y., Rosenzweig, D., Rossman, B.: Interactive small-step algorithms I: Axiomatization. Logical Methods in Computer Science 3(4) (2007)Google Scholar
  7. 7.
    Boudol, G.: Notes on algebraic calculi of processes. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. NATO-ASI Series, vol. F13, pp. 261–303. Springer, Berlin (1985)CrossRefGoogle Scholar
  8. 8.
    Darondeau, P.: Bisimulation and effectiveness. Inf. Process. Lett. 30(1), 19–20 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    van Glabbeek, R.J.: The Linear Time – Branching Time Spectrum II. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)Google Scholar
  10. 10.
    van Glabbeek, R.J., Luttik, B., Trcka, N.: Branching bisimilarity with explicit divergence. Fundam. Inform. 93(4), 371–392 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. Journal of the ACM 43(3), 555–600 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Goldin, D.Q., Smolka, S.A., Attie, P.C., Sonderegger, E.L.: Turing machines, transition systems, and interaction. Inf. Comput. 194(2), 101–128 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. NATO ASI Series, vol. F-13, pp. 477–498. Springer, New York (1985)CrossRefGoogle Scholar
  14. 14.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  15. 15.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  16. 16.
    Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Bonn: Institut für Instrumentelle Mathematik, Schriften des IIM Nr. 2 (1962)Google Scholar
  17. 17.
    Phillips, I.C.C.: A note on expressiveness of process algebra. In: Burn, G.L., Gay, S., Ryan, M.D. (eds.) Proceedings of the First Imperial College Department of Computing Workshop on Theory and Formal Methods, Workshops in Computing, pp. 260–264. Springer, Heidelberg (1993)Google Scholar
  18. 18.
    Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill Book Company, New York (1967); Reprinted by MIT Press (1987)zbMATHGoogle Scholar
  19. 19.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 2(42), 230–265 (1936)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Turing, A.M.: Systems of logic based on ordinals. Proceedings of the London Mathematical Society 45(2), 161–228 (1939)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    van Leeuwen, J., Wiedermann, J.: On algorithms and interaction. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 99–113. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jos C. M. Baeten
    • 1
  • Bas Luttik
    • 1
  • Paul van Tilburg
    • 1
  1. 1.Eindhoven University of TechnologyThe Netherlands

Personalised recommendations