On Memoryless Quantitative Objectives

  • Krishnendu Chatterjee
  • Laurent Doyen
  • Rohit Singh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6914)

Abstract

In two-player games on graph, the players construct an infinite path through the game graph and get a reward computed by a payoff function over infinite paths. Over weighted graphs, the typical and most studied payoff functions compute the limit-average or the discounted sum of the rewards along the path. Besides their simple definition, these two payoff functions enjoy the property that memoryless optimal strategies always exist.

In an attempt to construct other simple payoff functions, we define a class of payoff functions which compute an (infinite) weighted average of the rewards. This new class contains both the limit-average and the discounted sum functions, and we show that they are the only members of this class which induce memoryless optimal strategies, showing that there is essentially no other simple payoff functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49, 672–713 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bojańczyk, M.: Beyond omega-regular languages. In: Proc. of STACS. LIPIcs, vol. 5, pp. 11–16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  3. 3.
    Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Chatterjee, K., Doyen, L.: Energy parity games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 599–610. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Transactions on Computational Logic 11(4) (2010)Google Scholar
  6. 6.
    Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and synthesizing systems in probabilistic environments. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 380–395. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International Congress of Mathematicians, pp. 23–35. Institut Mittag-Leffler (1962)Google Scholar
  8. 8.
    Colcombet, T., Niwiński, D.: On the positional determinacy of edge-labeled games. Theor. Comput. Sci. 352(1-3), 190–196 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput. Sci. 380(1-2) (2007)Google Scholar
  11. 11.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. Journal of Game Theory 8(2), 109–113 (1979)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1997)MATHGoogle Scholar
  13. 13.
    Gimbert, H., Zielonka, W.: Games where you can play optimally without any memory. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 428–442. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)MATHGoogle Scholar
  15. 15.
    Gurvich, V.A., Karzanov, A.V., Khachiyan, L.G.: Cyclic games and an algorithm to find minimax cycle means in directed graphs. USSR Computational Mathematics and Mathematical Physics 28, 85–91 (1988)CrossRefMATHGoogle Scholar
  16. 16.
    Henzinger, T.A.: From boolean to quantitative notions of correctness. In: Proc. of POPL: Principles of Programming Languages, pp. 157–158. ACM, New York (2010)Google Scholar
  17. 17.
    Kechris, A.: Classical Descriptive Set Theory. Springer, Heidelberg (1995)CrossRefMATHGoogle Scholar
  18. 18.
    Kopczyński, E.: Half-positional determinacy of infinite games. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 336–347. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Liggett, T.A., Lippman, S.A.: Stochastic games with perfect information and time average payoff. Siam Review 11, 604–607 (1969)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Mertens, J.F., Neyman, A.: Stochastic games. International Journal of Game Theory 10, 53–66 (1981)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Puri, A.: Theory of Hybrid Systems and Discrete Event Systems. PhD thesis, University of California, Berkeley (1995)Google Scholar
  23. 23.
    Puterman, M.L.: Markov Decision Processes. John Wiley and Sons, Chichester (1994)CrossRefMATHGoogle Scholar
  24. 24.
    Shapley, L.S.: Stochastic games. Proc. Nat. Acad. Sci. USA 39, 1095–1100 (1953)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) New Trends in Formal Languages, vol. 3, ch. 7, pp. 389–455. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  26. 26.
    Velner, Y., Rabinovich, A.: Church synthesis problem for noisy input. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 275–289. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Zwick, U., Paterson, M.: The complexity of mean-payoff games on graphs. Theoretical Computer Science 158, 343–359 (1996)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Krishnendu Chatterjee
    • 1
  • Laurent Doyen
    • 2
  • Rohit Singh
    • 3
  1. 1.Institute of Science and Technology(IST)Austria
  2. 2.LSV, ENS Cachan & CNRSFrance
  3. 3.Indian Institute of Technology(IIT) BombayIndia

Personalised recommendations