A Categorical Semantics for Inductive-Inductive Definitions
- 492 Downloads
Abstract
Induction-induction is a principle for defining data types in Martin-Löf Type Theory. An inductive-inductive definition consists of a set A, together with an A-indexed family B : A → Set, where both A and B are inductively defined in such a way that the constructors for A can refer to B and vice versa. In addition, the constructors for B can refer to the constructors for A. We extend the usual initial algebra semantics for ordinary inductive data types to the inductive-inductive setting by considering dialgebras instead of ordinary algebras. This gives a new and compact formalisation of inductive-inductive definitions, which we prove is equivalent to the usual formulation with elimination rules.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Abbott, M., Altenkirch, T., Ghani, N.: Containers: Constructing strictly positive types. Theoretical Computer Science 342(1), 3–27 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Altenkirch, T., Morris, P.: Indexed containers. In: 24th Annual IEEE Symposium on Logic In Computer Science, LICS 2009, pp. 277–285 (2009)Google Scholar
- 3.Chapman, J.: Type theory should eat itself. Electronic Notes in Theoretical Computer Science 228, 21–36 (2009)CrossRefGoogle Scholar
- 4.Danielsson, N.A.: A formalisation of a dependently typed language as an inductive-recursive family. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 93–109. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 5.Dybjer, P.: Inductive families. Formal Aspects of Computing 6(4), 440–465 (1994)zbMATHCrossRefGoogle Scholar
- 6.Dybjer, P.: Internal type theory. In: Berardi, S., Coppo, M. (eds.) TYPES 1995. LNCS, vol. 1158, pp. 120–134. Springer, Heidelberg (1996)Google Scholar
- 7.Dybjer, P., Setzer, A.: A finite axiomatization of inductive-recursive definitions. In: Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 129–146. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 8.Dybjer, P., Setzer, A.: Induction–recursion and initial algebras. Annals of Pure and Applied Logic 124(1-3), 1–47 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- 9.Ghani, N., Johann, P., Fumex, C.: Fibrational induction rules for initial algebras. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 336–350. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 10.Goguen, J., Thatcher, J., Wagner, E., Wright, J.: Initial algebra semantics and continuous algebras. Journal of the ACM 24(1), 68–95 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Hagino, T.: A Categorical Programming Language. Ph.D. thesis, University of Edinburgh (1987)Google Scholar
- 12.Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational setting. Information and Computation 145(2), 107–152 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Hofmann, M.: Syntax and semantics of dependent types. In: Semantics and Logics of Computation, pp. 79–130. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
- 14.Martin-Löf, P.: Intuitionistic type theory. Bibliopolis Naples (1984)Google Scholar
- 15.Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s type theory: an introduction. Oxford University Press, Oxford (1990)zbMATHGoogle Scholar
- 16.Nordvall Forsberg, F., Setzer, A.: Inductive-inductive definitions. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 454–468. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 17.Norell, U.: Towards a practical programming language based on dependent type theory. Ph.D. thesis, Chalmers University of Technology (2007)Google Scholar
- 18.Poll, E., Zwanenburg, J.: From algebras and coalgebras to dialgebras. Electronic Notes in Theoretical Computer Science 44(1), 289–307 (2001)CrossRefGoogle Scholar