A Categorical Semantics for Inductive-Inductive Definitions

  • Thorsten Altenkirch
  • Peter Morris
  • Fredrik Nordvall Forsberg
  • Anton Setzer
Conference paper

DOI: 10.1007/978-3-642-22944-2_6

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6859)
Cite this paper as:
Altenkirch T., Morris P., Nordvall Forsberg F., Setzer A. (2011) A Categorical Semantics for Inductive-Inductive Definitions. In: Corradini A., Klin B., Cîrstea C. (eds) Algebra and Coalgebra in Computer Science. CALCO 2011. Lecture Notes in Computer Science, vol 6859. Springer, Berlin, Heidelberg

Abstract

Induction-induction is a principle for defining data types in Martin-Löf Type Theory. An inductive-inductive definition consists of a set A, together with an A-indexed family B : A → Set, where both A and B are inductively defined in such a way that the constructors for A can refer to B and vice versa. In addition, the constructors for B can refer to the constructors for A. We extend the usual initial algebra semantics for ordinary inductive data types to the inductive-inductive setting by considering dialgebras instead of ordinary algebras. This gives a new and compact formalisation of inductive-inductive definitions, which we prove is equivalent to the usual formulation with elimination rules.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thorsten Altenkirch
    • 1
  • Peter Morris
    • 1
  • Fredrik Nordvall Forsberg
    • 2
  • Anton Setzer
    • 2
  1. 1.School of Computer ScienceUniversity of NottinghamUK
  2. 2.Department of Computer ScienceSwansea UniversityUK

Personalised recommendations