PREG Axiomatizer – A Ground Bisimilarity Checker for GSOS with Predicates

  • Luca Aceto
  • Georgiana Caltais
  • Eugen-Ioan Goriac
  • Anna Ingolfsdottir
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6859)


PREG Axiomatizer is a tool used for proving strong bisimilarity between ground terms consisting of operations in the GSOS format extended with predicates. It automatically derives sound and ground-complete axiomatizations using a technique proposed by the authors of this paper. These axiomatizations are provided as input to the Maude system, which, in turn, is used as a reduction engine for provided ground terms. These terms are bisimilar if and only if their normal forms obtained in this fashion are equal. The motivation of this tool is the optimized handling of equivalence checking between complex ground terms within automated provers and checkers.


Structural operational semantics GSOS rule format bisimilarity equational axiomatizations Maude 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, L.: Deriving complete inference systems for a class of GSOS languages generation regular behaviours. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 449–464. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  2. 2.
    Aceto, L., Bloom, B., Vaandrager, F.: Turning SOS rules into equations. Inf. Comput. 111, 1–52 (1994), MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Aceto, L., Caltais, G., Goriac, E.I., Ingólfsdóttir, A.: Axiomatizing GSOS with predicates (2011),
  4. 4.
    Aceto, L., Cimini, M., Ingólfsdóttir, A., Mousavi, M., Reniers, M.A.: SOS rule formats for zero and unit elements. Theoretical Computer Science (to appear, 2011)Google Scholar
  5. 5.
    Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories of Communicating Processes. Cambridge Tracts in Theoretical Computer Science, vol. 50. Cambridge University Press, Cambridge (2010)MATHGoogle Scholar
  6. 6.
    Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge University Press, New York (1990)CrossRefGoogle Scholar
  7. 7.
    Baeten, J.C.M., de Vink, E.P.: Axiomatizing GSOS with termination. J. Log. Algebr. Program. 60-61, 323–351 (2004)CrossRefGoogle Scholar
  8. 8.
    Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42, 232–268 (1995), MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bosscher, D.J.B.: Term rewriting properties of SOS axiomatisations. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 425–439. Springer, Heidelberg (1994), Google Scholar
  10. 10.
    Chalub, F., Braga, C.: Maude MSOS Tool. Electron. Notes Theor. Comput. Sci. 176, 133–146 (2007), CrossRefGoogle Scholar
  11. 11.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.L. (eds.): All About Maude - A High-Performance Logical Framework, How to Specify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer, Heidelberg (2007)MATHGoogle Scholar
  12. 12.
    Milner, R.: Communication and Concurrency. Prentice-Hall International, Englewood Cliffs (1989)MATHGoogle Scholar
  13. 13.
    Mousavi, M.R., Reniers, M.A.: Prototyping SOS meta-theory in Maude. Electron. Notes Theor. Comput. Sci. 156, 135–150 (2006), CrossRefGoogle Scholar
  14. 14.
    Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Program. 60-61, 17–139 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Luca Aceto
    • 1
  • Georgiana Caltais
    • 1
  • Eugen-Ioan Goriac
    • 1
  • Anna Ingolfsdottir
    • 1
  1. 1.ICE-TCS, School of Computer ScienceReykjavik UniversityIceland

Personalised recommendations