Proving Safety Properties of Rewrite Theories

  • Camilo Rocha
  • José Meseguer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6859)

Abstract

Rewrite theories are a general and expressive formalism for specifying concurrent systems in which states are axiomatized by equations and transitions among states are axiomatized by rewrite rules. We present a deductive approach for verifying safety properties of rewrite theories in which all formal temporal reasoning about concurrent transitions is ultimately reduced to purely equational inductive reasoning. Narrowing modulo axioms is extensively used in our inference system to further simplify the equational proof obligations to which all proofs of safety formulas are ultimately reduced. In this way, existing equational reasoning techniques and tools can be directly applied to verify safety properties of concurrent systems. We report on the implementation of this deductive system in the Maude Invariant Analyzer tool, which provides a substantial degree of automation and can automatically discharge many proof obligations without user intervention.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. Theoretical Computer Science 360(1-3), 386–414 (2006)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Chandy, K.M., Misra, J.: Parallel Program Design, A foundation. Addison Wesley, Reading (1988)MATHGoogle Scholar
  3. 3.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge (1999)Google Scholar
  4. 4.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Bevilacqua, V., Talcott, C.: All About Maude - A High-Performance Logical Framework, 1st edn. LNCS, vol. 4350. Springer, Heidelberg (2007)MATHGoogle Scholar
  5. 5.
    Durán, F., Meseguer, J.: A church-rosser checker tool for conditional order-sorted equational maude specifications. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 69–85. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Escobar, S., Bevilacqua, V.: Symbolic model checking of infinite-state systems using narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Farzan, A., Meseguer, J.: State space reduction of rewrite theories using invisible transitions. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 142–157. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Hendrix, J.: Decision Procedures for Equationally Based Reasoning. PhD thesis. University of Illinois at Urbana-Champaign (April 2008)Google Scholar
  9. 9.
    Jouannaud, J.-P., Kirchner, C., Kirchner, H.: Incremental construction of unification algorithms in equational theories. In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 361–373. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  10. 10.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems. Springer, New York (1992)CrossRefGoogle Scholar
  11. 11.
    Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems. Springer, New York (1995)Google Scholar
  12. 12.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science 96(1), 73–155 (1992)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer, Heidelberg (1998)Google Scholar
  14. 14.
    Meseguer, J., Palomino, M., Martí-Oliet, N.: Equational abstractions. Theoretical Computer Science 403(2-3), 239–264 (2008)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Ogata, K., Futatsugi, K.: Proof scores in the oTS/CafeOBJ method. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 170–184. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. Technical report. University of Illinois at Urbana-Champaign (2010), http://hdl.handle.net/2142/17407
  17. 17.
    Rusu, V.: Combining theorem proving and narrowing for rewriting-logic specifications. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143, pp. 135–150. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Rusu, V., Clavel, M.: Vérification d’invariants pour des systèmes spécifiés en logique de réécriture. Vingtièmes Journées Francophones des Langages Applicatifs 7.2, 317–350 (2009)Google Scholar
  19. 19.
    Tiwari, A., Rueß, H., Saïdi, H., Shankar, N.: A technique for invariant generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 113–127. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Viry, P.: Equational rules for rewriting logic. Theoretical Computer Science 285, 487–517 (2002)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Camilo Rocha
    • 1
  • José Meseguer
    • 1
  1. 1.University of IllinoisUrbana-ChampaignUSA

Personalised recommendations