Stone Duality for Nominal Boolean Algebras with И

  • Murdoch J. Gabbay
  • Tadeusz Litak
  • Daniela Petrişan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6859)


We define Boolean algebras over nominal sets with a function symbol И mirroring the И ‘fresh name’ quantifier (Banonas), and dual notions of nominal topology and Stone space. We prove a representation theorem over fields of nominal sets, and extend this to a Stone duality.


Boolean Algebra Representation Theorem Universal Algebra Canonical Extension Hybrid Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S., Ghica, D.R., Murawski, A.S., Luke Ong, C.-H., Stark, I.D.B.: Nominal games and full abstraction for the nu-calculus. In: Proceedings of the 19th IEEE Symposium on Logic in Computer Science, LICS 2004, pp. 150–159. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  2. 2.
    Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic. Elsevier, Amsterdam (2007)Google Scholar
  3. 3.
    Bengtson, J., Parrow, J.: Formalising the π-Calculus Using Nominal Logic. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 63–77. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bonsangue, M., Kurz, A.: Pi-calculus in logical form. In: Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science, LICS 2007, pp. 303–312. IEEE Computer Society Press, Los Alamitos (2007)CrossRefGoogle Scholar
  5. 5.
    Burris, S., Sankappanavar, H.: A Course in Universal Algebra. Graduate Texts in Mathematics. Springer, Heidelberg (1981)Google Scholar
  6. 6.
    Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Information and Computation 186(2), 194–235 (2003)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Cardelli, L., Gordon, A.: Logical Properties of Name Restriction. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 46–60. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Cheney, J.: A simpler proof theory for nominal logic. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 379–394. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Cheney, J., Urban, C.: Nominal logic programming. ACM Transactions on Programming Languages and Systems (TOPLAS) 30(5), 1–47 (2008)CrossRefGoogle Scholar
  10. 10.
    Cîrstea, C., Kurz, A., Pattinson, D., Schröder, L., Venema, Y.: Modal logics are coalgebraic. The Computer Journal (2009)Google Scholar
  11. 11.
    Dowek, G., Gabbay, M.J.: Permissive Nominal Logic. In: Proceedings of the 12th International ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming, PPDP 2010, pp. 165–176 (2010)Google Scholar
  12. 12.
    Fernández, M., Gabbay, M.J.: Nominal rewriting with name generation: abstraction vs. locality. In: Proceedings of the 7th ACM SIGPLAN International Symposium on Principles and Practice of Declarative Programming, PPDP 2005, pp. 47–58. ACM Press, New York (2005)Google Scholar
  13. 13.
    Gabbay, M.J.: Fresh Logic. Journal of Applied Logic 5(2), 356–387 (2007)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Gabbay, M.J.: Nominal Algebra and the HSP Theorem. Journal of Logic and Computation 19(2), 341–367 (2009)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Gabbay, M.J.: A study of substitution, using nominal techniques and Fraenkel-Mostowski sets. Theoretical Computer Science 410(12-13), 1159–1189 (2009)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Gabbay, M.J.: Foundations of nominal techniques: logic and semantics of variables in abstract syntax. Bulletin of Symbolic Logic (2011) (in press)Google Scholar
  17. 17.
    Gabbay, M.J., Cheney, J.: A Sequent Calculus for Nominal Logic. In: Proceedings of the 19th IEEE Symposium on Logic in Computer Science, LICS 2004, pp. 139–148. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  18. 18.
    Gabbay, M.J., Ciancia, V.: Freshness and Name-Restriction in Sets of Traces with Names. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 365–380. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Gabbay, M.J., Mathijssen, A.: Nominal universal algebra: equational logic with names and binding. Journal of Logic and Computation 19(6), 1455–1508 (2009)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Gabbay, M.J., Pitts, A.M.: A New Approach to Abstract Syntax with Variable Binding. Formal Aspects of Computing 13(3-5), 341–363 (2001)CrossRefGoogle Scholar
  21. 21.
    Keenan, E., Westerståhl, D.: Generalized quantifiers in linguistics and logic. In: Van Benthem, J., Ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 837–894. Elsevier, Amsterdam (1996)Google Scholar
  22. 22.
    Kurz, A., Petrişan, D.: On universal algebra over nominal sets. Mathematical Structures in Computer Science 20, 285–318 (2010)MATHCrossRefGoogle Scholar
  23. 23.
    Litak, T.: Algebraization of Hybrid Logic with Binders. In: Schmidt, R. (ed.) RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 281–295. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Lane, S.M.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5. Springer, Heidelberg (1971)MATHGoogle Scholar
  25. 25.
    Manzonetto, G., Salibra, A.: Applying universal algebra to lambda calculus. Journal of Logic and Computation 20(4), 877–915 (2010)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    McCune, W.: Solution of the Robbins problem. Journal of Automated Reasoning 19, 263–276 (1997)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Menni, M.: About И-quantifiers. Applied Categorical Structures 11(5), 421–445 (2003)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Pitts, A.M.: Nominal system T. In: Proceedings of the 37th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL 2010, pp. 159–170. ACM Press, New York (2010)Google Scholar
  29. 29.
    Pitts, A.M.: Structural recursion with locally scoped names (September 2010) (submitted for publication)Google Scholar
  30. 30.
    Reed, J.: Hybridizing a logical framework. Electronic Notes in Theoretical Computer Science 174(6), 135–148 (2006); Proceedings of the International Workshop on Hybrid Logic (HyLo 2006)CrossRefGoogle Scholar
  31. 31.
    Shinwell, M.R., Pitts, A.M.: On a monadic semantics for freshness. Theoretical Computer Science 342(1), 28–55 (2005)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Shinwell, M.R., Pitts, A.M., Gabbay, M.J.: FreshML: Programming with Binders Made Simple. In: Proceedings of the 8th ACM SIGPLAN International Conference on Functional Programming, ICFP 2003, vol. 38, pp. 263–274. ACM Press, New York (2003)CrossRefGoogle Scholar
  33. 33.
    Staton, S.: Name-passing process calculi: operational models and structural operational semantics. Technical Report UCAM-CL-TR-688, University of Cambridge, Computer Laboratory (June 2007)Google Scholar
  34. 34.
    Tiu, A.: A logic for reasoning about generic judgments. Electronic Notes in Theoretical Computer Science 174(5), 3–18 (2007)CrossRefGoogle Scholar
  35. 35.
    Turner, D.C.: Nominal Domain Theory for Concurrency. PhD thesis, University of Cambridge (2009)Google Scholar
  36. 36.
    Tzevelekos, N.: Full abstraction for nominal general references. In: Proceedings of the 22nd IEEE Symposium on Logic in Computer Science, LICS 2007, pp. 399–410. IEEE Computer Society Press, Los Alamitos (2007)CrossRefGoogle Scholar
  37. 37.
    Venema, Y.: Algebras and coalgebras. In: Blackburn, P., Van Benthem, J., Wolter, P. (eds.) Handbook of Modal Logic. Studies in logic and practical reasoning, ch. 6, vol. 3. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
  38. 38.
    Westerståhl, D.: Quantifiers in formal and natural languages. In: Handbook of Philosophical Logic. Synthèse, ch. 2, vol. 4, pp. 1–131. Reidel, Dordrechtz (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Murdoch J. Gabbay
  • Tadeusz Litak
  • Daniela Petrişan

There are no affiliations available

Personalised recommendations