Refinement Trees: Calculi, Tools, and Applications

  • Mihai Codescu
  • Till Mossakowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6859)


We recall a language for refinement and branching of formal developments. We introduce a notion of refinement tree and present proof calculi for checking correctness of refinements as well as their consistency. Both calculi have been implemented in the Heterogeneous Tool Set (Hets), and have been integrated with other tools like model finders and conservativity checkers. This technique has already been applied for showing the consistency of a first-order ontology that is too large to be tackled directly by model finders.


Generic Unit Model Semantic Static Semantic Unit Signature Semantic Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrial, J.-R., Börger, E., Langmaack, H.: Formal Methods for Industrial Applications, Specifying and Programming the Steam Boiler Control. LNCS, vol. 1165. Springer, Heidelberg (1996)Google Scholar
  2. 2.
    Astesiano, E., Kreowski, H.-J., Krieg-Brückner, B.: Algebraic Foundations of Systems Specification. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Bidoit, M., Mosses, P.D. (eds.): CASL User Manual. LNCS, vol. 2900. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  4. 4.
    Bidoit, M., Sannella, D., Tarlecki, A.: Architectural specifications in CASL. Formal Aspects of Computing 13, 252–273 (2002)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bidoit, M., Sannella, D., Tarlecki, A.: Observational interpretation of Casl specifications. Mathematical Structures in Computer Science 18(2), 325–371 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Codescu, M.: Lambda Expressions in CASL Architectural Specifications. In: Mossakowski, T., Kreowski, H.-J. (eds.) 20th International Workshop on Recent Trends in Algebraic Development Techniques, WADT 2010. LNCS. Springer, Heidelberg (2011)Google Scholar
  7. 7.
    Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 166–181. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification and programming. Logic of Programs 1983 39, 95–146 (1992); Predecessor in: LNCS. vol. 164, pp. 221–256 (1984)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Hoffman, P.: Architectural Specifications and Their Verification. PhD thesis, Warsaw University (2005)Google Scholar
  10. 10.
    Kutz, O., Mossakowski, T.: A modular consistency proof for Dolce. In: 25th Conference on Artificial Intelligence, AAAI 2011 (to appear, 2011)Google Scholar
  11. 11.
    Liu, M.: Konsistenz-Check von CASL-Spezifikationen. Master’s thesis, University of Bremen (2008)Google Scholar
  12. 12.
    Mossakowski, T., Autexier, S., Hutter, D.: Development graphs – proof management for structured specifications. Journal of Logic and Algebraic Programming 67(1-2), 114–145 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Mossakowski, T., Sannella, D., Tarlecki, A.: A simple refinement language for casl. In: Fiadeiro, J.L., Mosses, P.D., Yu, Y. (eds.) WADT 2004. LNCS, vol. 3423, pp. 162–185. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Mosses, P.D. (ed.): CASL Reference Manual. LNCS, vol. 2960. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  16. 16.
    Pease, A.: The SUMO challenges,
  17. 17.
    Roggenbach, M., Schröder, L.: Towards Trustworthy Specifications I: Consistency Checks. In: Cerioli, M., Reggio, G. (eds.) WADT 2001 and CoFI WG Meeting 2001. LNCS, vol. 2267, p. 305. Springer, Heidelberg (2002), CrossRefGoogle Scholar
  18. 18.
    Sannella, D., Tarlecki, A.: Toward formal development of programs from algebraic specifications: implementations revisited. Acta Informatica 25, 233–281 (1988)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mihai Codescu
    • 1
  • Till Mossakowski
    • 1
  1. 1.DFKI GmbHBremenGermany

Personalised recommendations