Advertisement

On the Statistical Thermodynamics of Reversible Communicating Processes

  • Giorgio Bacci
  • Vincent Danos
  • Ohad Kammar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6859)

Abstract

We propose a probabilistic interpretation of a class of reversible communicating processes. The rate of forward and backward computing steps, instead of being given explicitly, is derived from a set of formal energy parameters. This is similar to the Metropolis-Hastings algorithm. We find a lower bound on energy costs which guarantees that a process converges to a probabilistic equilibrium state (a grand canonical ensemble in statistical physics terms [19]). This implies that such processes hit a success state in finite average time, if there is one.

Keywords

Internal Node Statistical Thermodynamic Local Memory Success State Detailed Balance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Danos, V., Krivine, J., Tarissan, F.: Self-assembling trees. Electr. Notes Theor. Comput. Sci. 175(1), 19–32 (2007)CrossRefGoogle Scholar
  4. 4.
    Danos, V., Oury, N.: Equilibrium and termination. In: Cooper, S.B., Panangaden, P., Kashefi, E. (eds.) Proceedings Sixth Workshop on Developments in Computational Models: Causality, Computation, and Physics. EPTCS, vol. 26, pp. 75–84 (2010)Google Scholar
  5. 5.
    Danos, V., Oury, N.: Equilibrium and termination II: the case of Petri Nets. Mathematical Structures in Computer Science (to appear, 2011)Google Scholar
  6. 6.
    Demangeon, R., Hirschkoff, D., Kobayashi, N., Sangiorgi, D.: On the complexity of termination inference for processes. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 140–155. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Diaconis, P.: The Markov chain Monte-Carlo revolution. AMS 46(2), 179–205 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Krivine, J.: Algébres de Processus Réversible - Programmation Concurrente Déclarative. Ph.D. thesis, Université Paris 6 & INRIA Rocquencourt (November 2006)Google Scholar
  9. 9.
    Krivine, J.: A verification algorithm for declarative concurrent programming. CoRR abs/cs/0606095 (2006)Google Scholar
  10. 10.
    Kwiatkowski, M., Stark, I.: The continuous π-calculus: A process algebra for biochemical modelling. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 103–122. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order pi. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Lévy, J.J.: Réductions correctes et optimales dans le λ-calcul. Ph.D. thesis, Thèse de doctorat d’État, Université Paris 7 (1978)Google Scholar
  13. 13.
    Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E., et al.: Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21(6), 1087 (1953)CrossRefGoogle Scholar
  14. 14.
    Milner, R.: Communication and concurrency. International Series on Computer Science. Prentice Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  15. 15.
    Norris, J.: Markov chains. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  16. 16.
    Ollivier, J., Shahrezaei, V., Swain, P.: Scalable rule-based modelling of allosteric proteins and biochemical networks. PLoS Computational Biology 6(11) (2010)Google Scholar
  17. 17.
    Prasad, K.V.S.: Combinators and bisimulation proofs for restartable systems. Ph.D. thesis, University of Edinburgh (1987)Google Scholar
  18. 18.
    Schmidt, M.: Generalized j-factorial functions, polynomials, and applications. Journal of Integer Sequences 13(2), 3 (2010)Google Scholar
  19. 19.
    Streater, R.: Statistical dynamics. Imperial College Press, London (1995)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Giorgio Bacci
    • 1
  • Vincent Danos
    • 2
  • Ohad Kammar
    • 2
  1. 1.DiMIUniversity of UdineItaly
  2. 2.LFCS, School of InformaticsUniversity of EdinburghUK

Personalised recommendations