Lower Bounds on the Query Complexity of Non-uniform and Adaptive Reductions Showing Hardness Amplification

  • Sergei Artemenko
  • Ronen Shaltiel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6845)


Hardness amplification results show that for every function f there exists a function Amp(f) such that the following holds: if every circuit of size s computes f correctly on at most a 1 − δ fraction of inputs, then every circuit of size s′ computes Amp(f) correctly on at most a 1/2 + ε fraction of inputs. All hardness amplification results in the literature suffer from “size loss” meaning that s′ ≤ ε·s. In this paper we show that proofs using “non-uniform reductions” must suffer from size loss. To the best of our knowledge, all proofs in the literature are by non-uniform reductions. Our result is the first lower bound that applies to non-uniform reductions that are adaptive.

A reduction is an oracle circuit R (·) such that when given oracle access to any function D that computes Amp(f) correctly on a 1/2 + ε fraction of inputs, R D computes f correctly on a 1 − δ fraction of inputs. A non-uniform reduction is allowed to also receive a short advice string α that may depend on both f and D in an arbitrary way. The well known connection between hardness amplification and list-decodable error-correcting codes implies that reductions showing hardness amplification cannot be uniform for ε < 1/4. A reduction is non-adaptive if it makes non-adaptive queries to its oracle. Shaltiel and Viola (STOC 2008) showed lower bounds on the number of queries made by non-uniform reductions that are non-adaptive. We show that every non-uniform reduction must make at least Ω(1/ε) queries to its oracle (even if the reduction is adaptive). This implies that proofs by non-uniform reductions must suffer from size loss.

We also prove the same lower bounds on the number of queries of non-uniform and adaptive reductions that are allowed to rely on arbitrary specific properties of the function f. Previous limitations on reductions were proven for “function-generic” hardness amplification, in which the non-uniform reduction needs to work for every function f and therefore cannot rely on specific properties of the function.


Query Complexity Pseudorandom Generator Basic Hardness Small Circuit Advice String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AGGM06]
    Akavia, A., Goldreich, O., Goldwasser, S., Moshkovitz, D.: On basing one-way functions on np-hardness. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 701–710 (2006)Google Scholar
  2. [Ats06]
    Atserias, A.: Distinguishing sat from polynomial-size circuits, through black-box queries. In: IEEE Conference on Computational Complexity, pp. 88–95 (2006)Google Scholar
  3. [BFNW93]
    Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: Bpp has subexponential time simulations unless exptime has publishable proofs. Computational Complexity 3, 307–318 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [BS07]
    Bogdanov, A., Safra, M.: Hardness amplification for errorless heuristics. In: 48th Annual IEEE Symposium on Foundations of Computer Science, pp. 418–426 (2007)Google Scholar
  5. [BT06]
    Bogdanov, A., Trevisan, L.: On worst-case to average-case reductions for np problems. SIAM J. Comput. 36(4), 1119–1159 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [FF93]
    Feigenbaum, J., Fortnow, L.: Random-self-reducibility of complete sets. SIAM J. Comput. 22(5), 994–1005 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [GG11]
    Gopalan, P., Guruswami, V.: Hardness amplification within NP against deterministic algorithms. J. Comput. Syst. Sci. 77(1), 107–121 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [GGH+07]
    Goldwasser, S., Gutfreund, D., Healy, A., Kaufman, T., Rothblum, G.N.: Verifying and decoding in constant depth. In: 39th Annual ACM Symposium on Theory of Computing (STOC), pp. 440–449 (2007)Google Scholar
  9. [GIL+90]
    Goldreich, O., Impagliazzo, R., Levin, L.A., Venkatesan, R., Zuckerman, D.: Security preserving amplification of hardness. In: FOCS, pp. 318–326 (1990)Google Scholar
  10. [GK08]
    Guruswami, V., Kabanets, V.: Hardness amplification via space-efficient direct products. Computational Complexity 17(4), 475–500 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [GNW95]
    Goldreich, O., Nisan, N., Wigderson, A.: On Yao’s XOR lemma. Technical Report TR95–050, Electronic Colloquium on Computational Complexity (March 1995),
  12. [GR08]
    Gutfreund, D., Rothblum, G.: The complexity of local list decoding. In: 12th Intl. Workshop on Randomization and Computation, RANDOM (2008)Google Scholar
  13. [GSTS07]
    Gutfreund, D., Shaltiel, R., Ta-Shma, A.: If np languages are hard on the worst-case, then it is easy to find their hard instances. Computational Complexity 16(4), 412–441 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [GTS07]
    Gutfreund, D., Ta-Shma, A.: Worst-case to average-case reductions revisited. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 569–583. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. [GV08]
    Gutfreund, D., Vadhan, S.P.: Limitations of hardness vs. Randomness under uniform reductions. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 469–482. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. [HVV06]
    Healy, A., Vadhan, S.P., Viola, E.: Using nondeterminism to amplify hardness. SIAM J. Comput. 35(4), 903–931 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [IJK09a]
    Impagliazzo, R., Jaiswal, R., Kabanets, V.: Approximate list-decoding of direct product codes and uniform hardness amplification. SIAM J. Comput. 39(2), 564–605 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. [IJK09b]
    Impagliazzo, R., Jaiswal, R., Kabanets, V.: Chernoff-type direct product theorems. J. Cryptology 22(1), 75–92 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. [IJKW10]
    Impagliazzo, R., Jaiswal, R., Kabanets, V., Wigderson, A.: Uniform direct product theorems: Simplified, optimized, and derandomized. SIAM J. Comput. 39(4), 1637–1665 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. [Imp95]
    Impagliazzo, R.: Hard-core distributions for somewhat hard problems. In: FOCS, pp. 538–545 (1995)Google Scholar
  21. [IW97]
    Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In: STOC, pp. 220–229 (1997)Google Scholar
  22. [IW98]
    Impagliazzo, R., Wigderson, A.: Randomness vs. time: De-randomization under a uniform assumption. In: 39th Annual Symposium on Foundations of Computer Science. IEEE, Los Alamitos (1998)Google Scholar
  23. [KS03]
    Klivans, A., Servedio, R.A.: Boosting and hard-core sets. Machine Learning 53(3), 217–238 (2003)CrossRefzbMATHGoogle Scholar
  24. [Lev87]
    Levin, L.A.: One-way functions and pseudorandom generators. Combinatorica 7(4), 357–363 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  25. [Lip91]
    Lipton, R.: New directions in testing. In: Proceedings of DIMACS Workshop on Distributed Computing and Cryptography, vol. 2, pp. 191–202. ACM/AMS (1991)Google Scholar
  26. [LTW07]
    Lu, C.-J., Tsai, S.-C., Wu, H.-L.: On the complexity of hard-core set constructions. In: 34th International Colloquium on Automata, Languages and Programming, pp. 183–194 (2007)Google Scholar
  27. [LTW08]
    Lu, C.-J., Tsai, S.-C., Wu, H.-L.: On the complexity of hardness amplification. IEEE Transactions on Information Theory 54(10), 4575–4586 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. [O’D04]
    O’Donnell, R.: Hardness amplification within \(_{\mbox{np}}\). J. Comput. Syst. Sci. 69(1), 68–94 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  29. [RTV04]
    Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. [STV01]
    Sudan, M., Trevisan, L., Vadhan, S.P.: Pseudorandom generators without the xor lemma. J. Comput. Syst. Sci. 62(2), 236–266 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  31. [SU05]
    Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudorandom generator. J. ACM 52(2), 172–216 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  32. [SV10]
    Shaltiel, R., Viola, E.: Hardness amplification proofs require majority. SIAM J. Comput. 39(7), 3122–3154 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. [Tre03]
    Trevisan, L.: List-decoding using the xor lemma. In: 44th Symposium on Foundations of Computer Science, pp. 126–135 (2003)Google Scholar
  34. [Tre04]
    Trevisan, L.: Some applications of coding theory in computational complexity. In: Complexity of Computations and Proofs. Quad. Mat., vol. 13, pp. 347–424. Dept. Math., Seconda Univ., Napoli (2004)Google Scholar
  35. [Tre05]
    Trevisan, L.: On uniform amplification of hardness in np. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 31–38 (2005)Google Scholar
  36. [TV07]
    Trevisan, L., Vadhan, S.: Pseudorandomness and average-case complexity via uniform reductions. Computational Complexity 16(4), 331–364 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  37. [Vio05a]
    Viola, E.: The complexity of constructing pseudorandom generators from hard functions. Computational Complexity 13(3-4), 147–188 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  38. [Vio05b]
    Viola, E.: On constructing parallel pseudorandom generators from one-way functions. In: IEEE Conference on Computational Complexity, pp. 183–197 (2005)Google Scholar
  39. [Wat10]
    Watson, T.: Query complexity in errorless hardness amplification. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 17, p. 126 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sergei Artemenko
    • 1
  • Ronen Shaltiel
    • 1
  1. 1.University of HaifaIsrael

Personalised recommendations