Advertisement

A Hybrid Binarization Technique for Document Images

  • Vavilis Sokratis
  • Ergina Kavallieratou
  • Roberto Paredes
  • Kostas Sotiropoulos
Part of the Studies in Computational Intelligence book series (SCI, volume 375)

Abstract

In this chapter, a binarization technique specifically designed for historical document images is presented. Existing binarization techniques focus either on finding an appropriate global threshold or adapting a local threshold for each area in order to remove smear, strains, uneven illumination etc. Here, a hybrid approach is presented that first applies a global thresholding technique and, then, identifies the image areas that are more likely to still contain noise. Each of these areas is re-processed separately to achieve better quality of binarization. Evaluation results are presented that compare our technique with existing ones and indicate that the proposed approach is effective, combining the advantages of global and local thresholding. Finally, future directions of our research are mentioned.

Keywords

Document Image Processing Historical Document Images Binarization Algorithm Hybrid Algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Couasnon, B., Camillerapp, J., Leplumey, I.: Making handwritten archives documents accessible to public with a generic system of document image analysis. In: DIAL 2004, pp. 270–277 (2004)Google Scholar
  2. 2.
    Baird, H.S.: Difficult and Urgent Open Problems in Document Image Analysis for Libraries. In: DIAL 2004, pp. 25–32 (2004)Google Scholar
  3. 3.
    Marinai, S., Marino, E., Cesarini, F., Soda, G.: A general system for the retrieval of document images from digital libraries. In: DIAL 2004, pp. 150–173 (2004)Google Scholar
  4. 4.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Systems Man Cybernet. 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bernsen, J.: Dynamic thresholding of grey-level images. In: 8th Int. Conf. on Pattern Recognition, pp. 1251–1255 (1986)Google Scholar
  6. 6.
    Niblack, W.: An Introduction to Digital image processing, pp. 115–116. Prentice-Hall, Englewood Cliffs (1986)Google Scholar
  7. 7.
    Stathis, P., Kavallieratou, E., Papamarkos, N.: An evaluation technique for binarization algorithms. Journal of Universal Computer Science 14(18), 3011–3030 (2008)Google Scholar
  8. 8.
    Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1988)zbMATHGoogle Scholar
  9. 9.
    Kavallieratou, E.: A Binarization Algorithm Specialized on Document Images and Photos. In: 8th Int. Conf. on Document Analysis and Recognition, pp. 463–467 (2005)Google Scholar
  10. 10.
    Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recognition 33, 225–236 (2000)CrossRefGoogle Scholar
  11. 11.
    Leedham, G., Varma, S., Patankar, A., Govindaraju, V.: Separating Text and Background in Degraded Document Images. In: Proceedings Eighth InternationalWorkshop on Frontiers of Handwriting Recognition, pp. 244–249 (September 2002)Google Scholar
  12. 12.
    Shapiro, L., Stockman, G.: Computer Vision. Prentice-Hall, Englewood Cliffs (2001)Google Scholar
  13. 13.
    Gottesfeld Brown, L.: A survey of image registration techniques. ACM Computing Surveys 24(4), 325–396 (1992)CrossRefGoogle Scholar
  14. 14.
    Kitte, T.D., Evans, B.L., Daamera-Venkata, N., Bovil, A.C.: Image Quality Assessment Based on Degradation Model. IEEE Trans. Image Processing 9, 909–922 (2000)CrossRefGoogle Scholar
  15. 15.
    Veksler, O.: Fast Variable Window for Stereo Correspondence using Integral Images. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2003, vol. 1, pp. I-556 – I-561 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Vavilis Sokratis
    • 1
  • Ergina Kavallieratou
    • 1
  • Roberto Paredes
    • 2
  • Kostas Sotiropoulos
    • 3
  1. 1.Dept. of Information and Communication Systems EngineeringUniversity of the AegeanGreece
  2. 2.PRHLTUniversidad Politecnica de ValenciaSpain
  3. 3.University of PatrasGreece

Personalised recommendations