Privacy-Preserving Statistical Analysis on Ubiquitous Health Data

  • George Drosatos
  • Pavlos S. Efraimidis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6863)


In this work, we consider ubiquitous health data generated from wearable sensors in a Ubiquitous Health Monitoring System (UHMS) and examine how these data can be used within privacy- preserving distributed statistical analysis. To this end, we propose a secure multi-party computation based on a privacy-preserving cryptographic protocol that accepts as input current or archived values of users’ wearable sensors. We describe a prototype implementation of the proposed solution with a community of independent personal agents and present preliminary results that confirm the viability of the approach.


Ubiquitous health data privacy Distributed statistical analysis Personal data Secure multi-party computation Mutli-agent system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acquisti, A., Gritzalis, S., Lambrinoudakis, C., De Capitani di Vimercati, S.: Digital privacy. Auerbach Publications, Taylor & Francis Group (2008)Google Scholar
  2. 2.
    Aggarwal, C.C.: On k-anonymity and the curse of dimensionality. In: VLDB 2005, pp. 901–909 (2005)Google Scholar
  3. 3.
    Bouncycastle Java Library (January 2011),
  4. 4.
    Camous, F., McCann, D., Roantree, M.: Capturing personal health data from wearable sensors. In: SAINT 2008, pp. 153–156. IEEE, Los Alamitos (2008)Google Scholar
  5. 5.
    Ciriani, V., Capitani di Vimercati, S., Foresti, S., Samarati, P.: κ-anonymity. In: Secure Data Management in Decentralized Systems. Advances in Information Security, vol. 33, pp. 323–353. Springer, Heidelberg (2007)Google Scholar
  6. 6.
    Drosatos, G., Efraimidis, P.S.: Privacy-enhanced management of ubiquitous health monitoring data. In: PETRA 2011. ACM, New York (2011)Google Scholar
  7. 7.
    Drosatos, G., Efraimidis, P.S.: A privacy-preserving protocol for finding the nearest doctor in an emergency. In: PETRA 2010, pp. 18:1–18:8. ACM, New York (2010)Google Scholar
  8. 8.
    Du, W., Atallah, M.: Privacy-preserving cooperative statistical analysis. In: ACSAC 2001, pp. 102–112. IEEE, Los Alamitos (2001)Google Scholar
  9. 9.
    Du, W., Chen, S., Han, Y.S.: Privacy-preserving multivariate statistical analysis: Linear regression and classification. In: SDM 2004, pp. 222–233 (2004)Google Scholar
  10. 10.
    Duan, Y., Youdao, N., Canny, J., Zhan, J.Z.: P4P: practical large-scale privacy-preserving distributed computation robust against malicious users. In: USENIX Security Symposium, pp. 207–222 (2010)Google Scholar
  11. 11.
    Durresi, A., Durresi, M., Barolli, L.: Secure ubiquitous health monitoring system. In: Takizawa, M., Barolli, L., Enokido, T. (eds.) NBiS 2008. LNCS, vol. 5186, pp. 273–282. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Efraimidis, P.S., Drosatos, G., Nalbadis, F., Tasidou, A.: Towards privacy in personal data management. J. IMCS 17(4), 311–329 (2009)Google Scholar
  15. 15.
    Kantarcioglu, M., Kardes, O.: Privacy-preserving data mining in the malicious model. Int. J. IJICS 2(4), 353–375 (2008)CrossRefGoogle Scholar
  16. 16.
    Muntés-Mulero, V., Nin, J.: Privacy and anonymization for very large datasets. In: CIKM 2009, pp. 2117–2118. ACM, New York (2009)Google Scholar
  17. 17.
    Otto, C., Milenkovic, A., Sanders, C., Jovanov, E.: System Architecture of a Wireless Body Area Sensor Network for Ubiquitous Health Monitoring. J. JMM 1, 307–326 (2006)Google Scholar
  18. 18.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Yamazaki, A., Koyama, A., Arai, J., Barolli, L.: Design and implementation of a ubiquitous health monitoring system. Int. J. Web Grid Serv. 5, 339–355 (2009)CrossRefGoogle Scholar
  20. 20.
    Yao, A.C.C.: Protocols for secure computations (extended abstract). In: FOCS 1982, pp. 160–164. IEEE, Los Alamitos (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • George Drosatos
    • 1
  • Pavlos S. Efraimidis
    • 1
  1. 1.Electrical and Computer EngineeringDemocritus University of Thrace, University CampusXanthiGreece

Personalised recommendations