Privacy-Preserving Statistical Analysis on Ubiquitous Health Data

  • George Drosatos
  • Pavlos S. Efraimidis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6863)


In this work, we consider ubiquitous health data generated from wearable sensors in a Ubiquitous Health Monitoring System (UHMS) and examine how these data can be used within privacy- preserving distributed statistical analysis. To this end, we propose a secure multi-party computation based on a privacy-preserving cryptographic protocol that accepts as input current or archived values of users’ wearable sensors. We describe a prototype implementation of the proposed solution with a community of independent personal agents and present preliminary results that confirm the viability of the approach.


Ubiquitous health data privacy Distributed statistical analysis Personal data Secure multi-party computation Mutli-agent system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acquisti, A., Gritzalis, S., Lambrinoudakis, C., De Capitani di Vimercati, S.: Digital privacy. Auerbach Publications, Taylor & Francis Group (2008)Google Scholar
  2. 2.
    Aggarwal, C.C.: On k-anonymity and the curse of dimensionality. In: VLDB 2005, pp. 901–909 (2005)Google Scholar
  3. 3.
    Bouncycastle Java Library (January 2011),
  4. 4.
    Camous, F., McCann, D., Roantree, M.: Capturing personal health data from wearable sensors. In: SAINT 2008, pp. 153–156. IEEE, Los Alamitos (2008)Google Scholar
  5. 5.
    Ciriani, V., Capitani di Vimercati, S., Foresti, S., Samarati, P.: κ-anonymity. In: Secure Data Management in Decentralized Systems. Advances in Information Security, vol. 33, pp. 323–353. Springer, Heidelberg (2007)Google Scholar
  6. 6.
    Drosatos, G., Efraimidis, P.S.: Privacy-enhanced management of ubiquitous health monitoring data. In: PETRA 2011. ACM, New York (2011)Google Scholar
  7. 7.
    Drosatos, G., Efraimidis, P.S.: A privacy-preserving protocol for finding the nearest doctor in an emergency. In: PETRA 2010, pp. 18:1–18:8. ACM, New York (2010)Google Scholar
  8. 8.
    Du, W., Atallah, M.: Privacy-preserving cooperative statistical analysis. In: ACSAC 2001, pp. 102–112. IEEE, Los Alamitos (2001)Google Scholar
  9. 9.
    Du, W., Chen, S., Han, Y.S.: Privacy-preserving multivariate statistical analysis: Linear regression and classification. In: SDM 2004, pp. 222–233 (2004)Google Scholar
  10. 10.
    Duan, Y., Youdao, N., Canny, J., Zhan, J.Z.: P4P: practical large-scale privacy-preserving distributed computation robust against malicious users. In: USENIX Security Symposium, pp. 207–222 (2010)Google Scholar
  11. 11.
    Durresi, A., Durresi, M., Barolli, L.: Secure ubiquitous health monitoring system. In: Takizawa, M., Barolli, L., Enokido, T. (eds.) NBiS 2008. LNCS, vol. 5186, pp. 273–282. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Efraimidis, P.S., Drosatos, G., Nalbadis, F., Tasidou, A.: Towards privacy in personal data management. J. IMCS 17(4), 311–329 (2009)Google Scholar
  15. 15.
    Kantarcioglu, M., Kardes, O.: Privacy-preserving data mining in the malicious model. Int. J. IJICS 2(4), 353–375 (2008)CrossRefGoogle Scholar
  16. 16.
    Muntés-Mulero, V., Nin, J.: Privacy and anonymization for very large datasets. In: CIKM 2009, pp. 2117–2118. ACM, New York (2009)Google Scholar
  17. 17.
    Otto, C., Milenkovic, A., Sanders, C., Jovanov, E.: System Architecture of a Wireless Body Area Sensor Network for Ubiquitous Health Monitoring. J. JMM 1, 307–326 (2006)Google Scholar
  18. 18.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Yamazaki, A., Koyama, A., Arai, J., Barolli, L.: Design and implementation of a ubiquitous health monitoring system. Int. J. Web Grid Serv. 5, 339–355 (2009)CrossRefGoogle Scholar
  20. 20.
    Yao, A.C.C.: Protocols for secure computations (extended abstract). In: FOCS 1982, pp. 160–164. IEEE, Los Alamitos (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • George Drosatos
    • 1
  • Pavlos S. Efraimidis
    • 1
  1. 1.Electrical and Computer EngineeringDemocritus University of Thrace, University CampusXanthiGreece

Personalised recommendations