Advertisement

Electrostatic Force Method:

Trust Management Method Inspired by the Laws of Physics
  • Konrad Leszczyński
  • Maciej Zakrzewicz
Conference paper
  • 652 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6863)

Abstract

Online auctions are among the most important e-commerce services. Unfortunately it is very difficult to assure trust in such customer-to-customer environment. Most auction sites utilize a very simple participation counts system for reputation rating. This feedback-based reputation systems do not differentiate between sellers who trade in luxury goods and those who sell worthless trinkets. A fraudster can easily gain reputation by selling hundreds of cheap books and then cheat while selling a few expensive TV sets which are not as good as described on item page.

In this paper we present a novel trust management method called Electrostatic Force Method (EFM) which calculates Personal Subjective Trust instead of overall reputation value. The trust value depends on price and category of an item one wants to buy. In this method a seller could have high trust value for someone who wants to buy a book and at the same time this seller may not be trustworthy for someone who wants to buy a TV set. Furthermore our method can be applied in addition to the system currently used by eBay-like online auction sites because it does not require any additional information other than positive, negative or  neutral feedback on transactions.

Keywords

online auction sites reputation system trust management method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DeFigueiredo, D., Barr, E.T., Wu, S.F.: Trust Is in the Eye of the Beholder. In: CSE, vol. (3), pp. 100–108 (2009)Google Scholar
  2. 2.
    Houser, D., Wooders, J.: Reputation in Auctions: Theory, and Evidence from eBay. Journal of Economics & Management Strategy 15(2), 353–369 (2006)CrossRefGoogle Scholar
  3. 3.
    Kwan, M.Y.K., Overill, R.E., Chow, K.P., Silomon, J.A.M., Tse, H., Law, F.Y.W., Lai, P.K.Y.: Evaluation of Evidence in Internet Auction Fraud Investigations. In: IFIP Int. Conf. Digital Forensics, pp. 121–132 (2010)Google Scholar
  4. 4.
    Leszczyński, K.: Asymptotic Trust Algorithm: Extension for reputation systems in online auctions. In: KKNTPD 2010 - III Krajowa Konferencja Naukowa Technologie Przetwarzania Danych (2010)Google Scholar
  5. 5.
    Malaga, R.A.: Web-Based Reputation Management Systems: Problems and Suggested Solutions. Electronic Commerce Research 1, 403–417 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Marsh, S.P.: Formalising Trust as a Computational Concept. Ph.D. thesis, Department of Mathematics and Computer Science, University of Stirling (1994)Google Scholar
  7. 7.
    Morzy, M.: New algorithms for mining the reputation of participants of online auctions. Algorithmica 52(1), 95–112 (2008)CrossRefzbMATHGoogle Scholar
  8. 8.
    Morzy, M., Wierzbicki, A.: The Sound of Silence: Mining Implicit Feedbacks to Compute Reputation. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 365–376. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    O’Donovan, J., Evrim, V., Smyth, B., McLeod, D., Nixon, P.: Personalizing Trust in Online Auctions. In: STAIRS, pp. 72–83 (2006)Google Scholar
  10. 10.
    Resnick, P., Zeckhauser, R.: Trust Among Strangers in Internet Transactions: Empirical Analysis of eBay’s Reputation System. The Economics of the Internet and E-Commerce 11(2), 23–25 (2002)Google Scholar
  11. 11.
    Simpson, E.H.: The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society, Ser. B 13 (1951)Google Scholar
  12. 12.
    Xiong, L., Liu, L.: A Reputation-Based Trust Model for Peer-to-Peer eCommerce Communities. In: IEEE International Conference on E-Commerce Technology, p. 275 (2003)Google Scholar
  13. 13.
    Zacharia, G., Maes, P.: Trust management through reputation mechanisms. Applied Artificial Intelligence 14(7), 881–907 (2000)CrossRefGoogle Scholar
  14. 14.
    Zhang, H., Duan, H.X., Liu, W.: RRM: An incentive reputation model for promoting good behaviors in distributed systems. Science in China Series F: Information Sciences 51(11), 1871–1882 (2008)Google Scholar
  15. 15.
    Alexa Top 500 Global Web Sites, top 500 sites by alexa traffic ranking, http://www.alexa.com/topsites/global/
  16. 16.
    Allegro, the leading Polish provider of online auctions, http://allegro.pl/
  17. 17.
    ebay, the worldwide online auctions, http://www.ebay.com/
  18. 18.
    Ranking of sites. The 1000 most-visited sites on the web, http://www.google.com/adplanner/static/top1000/
  19. 19.
    Taobao, chinese auction portal with over 100 million users, http://taobao.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Konrad Leszczyński
    • 1
  • Maciej Zakrzewicz
    • 1
  1. 1.Poznań University of TechnologyPoznańPoland

Personalised recommendations