Sustainable Agriculture in China: Estimation and Reduction of Nitrogen Impacts

  • Günther Fischer
  • Wilfried Winiwarter
  • Tatiana Ermolieva
  • Gui-Ying Cao
  • Harrij van Velthuizen
  • Zbigniew Klimont
  • Wolfgang Schoepp
  • Wim van Veen
  • David Wiberg
  • Fabian Wagner
Conference paper
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 658)

Abstract

In this chapter we present an integrated model for long term and geographically explicit planning of agricultural activities to meet demands under resource constraints and ambient targets. Environmental, resource and production feasibility indicators permit estimating impacts of agricultural practices on environment to guide agricultural policies regarding production allocation, intensification, and fertilizer application while accounting for local constraints. Physical production potentials of land are incorporated in the model, together with demographic and socio-economic variables and behavioral drivers to reflect spatial distribution of demands and production intensification levels. The application of the model is demonstrated with a case study of nitrogen accounting at the level of China counties. We discuss current intensification trends and estimate the ranges of agricultural impacts on China’s environment under plausible pollution mitigation scenarios with a particular focus on nitrogen sources and losses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amann, M., Kejun, J., Jiming, H., Wang, S., Xing, Z., Wei, W., Yi Xiang, D., Hong, L., Jia, X., Chuying, Z., Bertok, I., Borken, J., Cofala, J., Heyes, C., Höglund, L., Klimont, Z., Purohit, P., Rafaj, P., Schöpp, W., Toth, G., Wagner, F., & Winiwarter, W. (2008). GAINS ASIA: Scenarios for cost-effective control of air pollution and greenhouse gases in China. IIASA Policy report. IIASA, Laxenburg, Austria.Google Scholar
  2. Bellocchi, G., Rivington. M., Donatelli., M., & Matthews, K. (2010). Validation of biophysical models: issues and methodologies: A review. Agronomy for Sustainable Development, 30, 1.Google Scholar
  3. Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., Van Der Hoek, K. W., Olivier, J. G. J. (1997). A global high-resolution emission inventory for ammonia. Global Biogeochem. Cycles, 11(4), 561–587.CrossRefGoogle Scholar
  4. Borodina, A., Borodina, E., Ermolieva, T., Ermoliev, Y., Fischer, G., Makowski, M., van Velthuizen (forthcoming). Food security and socio-economic risks of agricultural production intensification in Ukraine: a model-based policy decision support. Submitted to Marti, K., Ermoliev, Y., Makowski, M. (Eds.), Coping with Uncertainty: Robust Solutions. Springer Verlag, BerlinGoogle Scholar
  5. Bregman, L. (1967). Proof of the convergence of Sheleikhovskii’s method for a problem with transportation constraints. Journal of Computational Mathematics and Mathematical Physics, 7(1), 191–204. (Zhournal Vychislitel’noi Matematiki, USSR, Leningrad.Google Scholar
  6. Brink, C., Kroeze, C., & Klimont, Z. (2001). Ammonia abatement and its impact on emissions of nitrous oxide and methane – Part 1: Method. Atmospheric Environment, 35, 6299–6312.CrossRefGoogle Scholar
  7. Brown, L., Syed, B., Jarvis, S. C., Sneath, R.W., Phillips, V.R., Goulding, K.W.T., & Li, C. (2002). Development and application of a mechanistic model to estimate emissions of nitrous oxide from UK agriculture. Atmospheric Environment, 36, 917–928.CrossRefGoogle Scholar
  8. Eickhout, B., Bouwman., A. F., van Zeijts, H. (2006). The role of nitrogen in world food production and environmental sustainability. Agriculture, Ecosystems and Environment, 116, 4–14.Google Scholar
  9. Erisman, J. W., Bleeker, A., Galloway, J. N. & Sutton, M. A. (2007). Reduced nitrogen in ecology and the environment. Environmental Pollution, 150, 140–149.CrossRefGoogle Scholar
  10. Ermoliev, Y., & Wets, R. (Eds.) (1988). Numerical Techniques for Stochastic Optimization. Computational Mathematics. Berlin: Springer.Google Scholar
  11. Ermolieva T., Fischer, G., & van Velthuizen, H. (2005). Livestock production and environmental risks in China: Scenarios to 2030. FAO/IIASA Research Report. IIASA, Laxenburg, Austria.Google Scholar
  12. Ermolieva, T., Winiwarter, W., Fischer, G., Cao, G. Y., Klimont, Z., Schöpp, W., Li, Y., & Asman, W. A. H. (2009). Integrated nitrogen management in China. IIASA Interim Report, IR-09-005. IIASA, Laxenburg, Austria.Google Scholar
  13. FAO/IIASA/ISRIC/ISSCAS/JRC (2009). Harmonized World Soil Database (version 1.1). FAO, Rome, Italy and IIASA, Laxenburg, Austria.Google Scholar
  14. Fischer, G., Ermolieva, T., Ermoliev, Y., & van Velthuizen, H. (2006). Livestock production planning under environmental risks and uncertainties. Journal of Systems Science and System Engineering, 15(4), 385–399.Google Scholar
  15. Fischer, G., Cao, G.-Y., Ermolieva, T., & Sun, L.-X. (2008). Urbanization and livestock Production: An approach to health and environmental risks. Journal of Population and Development, 14(6), 2–10.Google Scholar
  16. Fischer, G., Ermolieva, T., Ermoliev, Y., & Sun, L. (2009). Risk-adjusted approaches for planning sustainable agricultural development. Stochastic Environmental Research and Risk Assessment, 23(4), 441–450.CrossRefGoogle Scholar
  17. Fischer, G., Ermolieva, T., Ermoliev, Y., & Sun, L. (2007). Integrated risk management approaches for planning sustainable agriculture. In C. Huang, C. Frey, & J. Feng (Eds.), Advances in Studies on Risk Analysis and Crisis Response. Paris, France: Atlantis Press.Google Scholar
  18. Fischer, G., Ermolieva, T., Ermoliev, Y., & van Velthuizen, H. (2006). Sequential downscaling methods for estimation from aggregate data. In K. Marti, Y. Ermoliev, M. Makowski, G. Pflug (Eds.), Coping with Uncertainty: Modeling and Policy Issue, pp. 155–169. Berlin, New York: Springer.CrossRefGoogle Scholar
  19. Fischer, G., & O’Neill, B. (2005). Global and case-based modeling of population and land-use change. In B. Entwisle, & P. C. Stern (Eds.), Population, Land Use, and Environment: Research Directions. Part II, 51–83. Washington DC, USA: The National Academies Press.Google Scholar
  20. Fischer, G., van Velthuizen, H., Mahendra, S., & Nachtergaele, F. (2002). Global agro-ecological assessment for agriculture in the 21st century: methodology and results. IIASA Research report, RR-02-02. IIASA, Laxenburg, Austria.Google Scholar
  21. Fischer, G., Winiwarter, W., Ermolieva, T., Cao, GY., Qui, H., Klimont, Z., Wiberg, D., & Wagner, F. (2010). Integrated modeling framework for assessment and mitigation of nitrogen pollution from agriculture: Concept and case study for China. Agriculture, Ecosystems and Environment, 136(1-2), 116–124.CrossRefGoogle Scholar
  22. Frolking, S. E., Mosier, A. R., Ojima, D. S., Li, C., Parton, W. J., Potter, C. S., Priesack, E., Stenger, R., Haberbosch, C., Dörsch, P., Flessa, H., & Smith, K. A. (1998). Comparison of N2O emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models. Nutrient Cycling in Agroecosystems, 52, 77–105.CrossRefGoogle Scholar
  23. Fujita, M., Krugman, P., & Venables, A. J. (1999). The Spatial Economy: Cities, Regions, and Internatinal Trade. Cambridge, Massachusetts, London, England: MIT Press.Google Scholar
  24. Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P.A., Holland, E.A., Karl, D.M., Michaels, A.F., Porter, J.H., Townsend, A. R., & Vörösmarty, C. J. (2004). Nitrogen cycles: past, present and future. Biogeochemistry, 70(2), 153–226.CrossRefGoogle Scholar
  25. Hall, P. (Ed.) (1966). Von Thünen’s Isolated State (English translation by Carla M. Wartenberg, with an introduction by the editor). Pergamon Press.Google Scholar
  26. Huang, J., Zhang, L., Li, Q., & Qiu, H. (2003). CHINAGRO project: National and regional economic development scenarios for China’s food economy projections in the early 21st Century. Report to Center for Chinese Agricultural Policy. Chinese Academy of Sciences.Google Scholar
  27. IPCC (2000). Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. J. Penman, D. Kruger, I. Galbally, T. Hiraishi, B. Nyenzi, S. Emmanul, L. Buendia, R. Hoppaus, T. Martinsen, J. Meijer, K. Miwa and K. Tanabe, eds., IPCC National Greenhouse Gas Inventories Programme, Institute for Global Environmental Strategies, Kanagawa, Japan.Google Scholar
  28. Kantorovich, L. V. (1942). On the translocation of masses. Comptes Rendus Academy of Sciences, URSS., 37, 199–201.Google Scholar
  29. Karlqvist, A., Lundqvist, L., Snickars,F., & Weibull, J. W. (1978). Studies in Regional Science and Urban Economics: Spatial Interaction Theory and Planning Models, Vol. 3. Amsterdam, New York: North-Holland Publishing Company.Google Scholar
  30. Keyzer, M. A., & van Veen, W. (2005). A summary description of the CHINAGRO-welfare model. CHINAGRO report. SOW-VU, Free University, Amsterdam, The Netherlands.Google Scholar
  31. Klimont, Z. (2001). Current and Future Emissions of Ammonia in China. Paper presented at the 10th Annual Emission Inventory Conference: One Atmosphere, One Inventory, Many Challenges. May 1-3, Denver, CO, USA.Google Scholar
  32. Klimont, Z., & Brink, C. (2004). Modeling of emissions of air pollutants and greenhouse gases from agricultural sources in Europe. IIASA Interim Report, IR-04-048. IIASA, Laxenburg, Austria.Google Scholar
  33. Koopmans, T. C. (1947). Optimum utilization of the transportation system. In Proc. Intern. Statis. Conf., Vol. V. Washington, D.C.Google Scholar
  34. Leonard, R. A., Knisel, W. G., & Still, D. A. (1987). GLEAMS: Groundwater loadingeffects of agricultural management systems. Transactions of the American Society of Agricultural Engineers, 30, 1403–1418.Google Scholar
  35. Li, C., Frolking, S., & Frolking, T. A. (1992). Model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research, 97, 9759–9776.Google Scholar
  36. Li, C., Narayanan, V., & Harriss, R. C. (1996). Model estimates of nitrous oxide emissions from agricultural lands in the United States. Global Biogeochemical Cycles, 10, 297–306.CrossRefGoogle Scholar
  37. Liu, S., Li, X., & Zhang, M. (2003). Scenario analysis of urbanization and rural-urban migration in China. IIASA Interim Report, IR-03-036. IIASA, Laxenburg, Austria.Google Scholar
  38. Manne, A. S. (1967). Investments for Capacity Expansions: Size, Location, and Time-phasing. Ruskin house, London: George Allen & Unwin LTD.Google Scholar
  39. Menzi, H. (2001). Area-wide Integration (AWI) of Specialized Crop and Livestock Activities: Assessment of Nutrient Management and Environmental Impacts. Final Report of SCA contribution in China. Swiss College of Agriculture (SCA), Switzerland. Internal Document.Google Scholar
  40. NuFlux (2001). NuFlux-AWI, User manual for the NuFlux-AWI Nutrient Balance Calculation Program. Main Manual. Swiss College of Agriculture (SCA), CH-3052, Zollikofen, Switzerland.Google Scholar
  41. Plieninger, J. (2008). Reshaping Economic Geography. World Development Report 2009.Google Scholar
  42. PRC (2004). Initial national communication on Climate Change. State Development Planning Commission, National Coordination Committee on Climate Change. The People’s Republic of China, Beijing.Google Scholar
  43. Rockafellar, T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. The Journal of Risk, 2, 21–41.Google Scholar
  44. Rosegrant, M. W., Ringler, C. & Gerpacio, R. (1999). Water and Land Resources and Global Supply. In G. H. Peters, & J. von Braun (Eds.), Food Security, Diversification and Resource Management: Refocusing the Role of Agriculture, Proceedings of the 23rd International conference of Agricultural Economics held at Sacramento, California 10-16 August 1997. England: University of Oxford.Google Scholar
  45. Seitzinger, S. P., Mayorga, E., Kroeze, C., Bouwman, A. F., Beusen, A. H. W., Billen, G., Van Drecht, G., Dumont, E., Fekete, B. M., Garnier, J., & Harrison, J. A. (2009). Global river nutrient export trajectories 1970-2050: A Millennium ecosystem assessment scenario analysis. Global Biogeochemical Cycles (in press).Google Scholar
  46. Shi, X. Z., Yu, D. S., Warner, E. D., Pan, X. Z., Petersen, G. W., Gong, Z. G., Weindorf, D. C. (2004). Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system. Soil Survey Horizons, 45, 129–136.Google Scholar
  47. Smil, V. (2001). Enriching the Earth: Fritz Haber, Carl Bosch and the Transformation of World Food Production. Cambridge, Massachusetts: MIT Press.Google Scholar
  48. Smith, W. N., Grant, B., Desjardins, R. L., Lemke, R., & Li, C. (2004). Estimates of the interannual variations of N2O emissions from agricultural soils in Canada. Nutrient Cycling in Agroecosystems, 68, 37–45.CrossRefGoogle Scholar
  49. Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., & de Haan, C. (2006). Livestock’s long shadow: environmental issues and options. FAO-LEAD, 2006. (Available online at http://books.google.com/books?id).
  50. Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S., Fu, Q., He, D., Klimont, Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J.-H., & Yarber, K. F. (2003). An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research, 108(D21), 8809. doi:10.1029/2002JD003093.Google Scholar
  51. Toth, F., Cao, G.-Y., & Hizsnyik, E. (2003). Regional population projections for China. IIASA Interim Report, IR-03-042. IIASA, Laxenburg, Austria.Google Scholar
  52. Van der Woude, A. M., Hayami, A., & de Vries, J. (Eds.) (1995). Urbanization in History: A Process of Dynamic Interactions. Clarendon Press Oxford, Oxford.Google Scholar
  53. Van der Werf, H. M. G., & Zimmer, C. (1998). An indicator of pesticide environmental impact based on a fuzzy expert system. Chemosphere, 36(10), 2225–2249.CrossRefGoogle Scholar
  54. Velthof, G. L., Oudendag, D., Witzke, H. P., Asman, W. A. H., Klimont, Z., & Oenema, O. (2009). Integrated assessment of nitrogen emissions from agriculture in EU-27 using MITERRA EUROPE. Journal of Environmental Quality, 38, 402–417. doi:10.2134/jeq2008.0108.CrossRefGoogle Scholar
  55. Winiwarter, W. (2005). The GAINS model for greenhouse gases: Version 1.0: nitrous oxide. IIASA Interim Report, IR-05-55. IIASA, Laxenburg, Austria.Google Scholar
  56. Wang, C. (2010). Allocation of resources for protecting public goods against uncertain threats generated by agents. IIASA Interim Report, IR-10-012, IIASA, Laxenburg, Austria.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Günther Fischer
    • 1
  • Wilfried Winiwarter
    • 3
    • 4
  • Tatiana Ermolieva
    • 1
  • Gui-Ying Cao
    • 1
  • Harrij van Velthuizen
    • 1
  • Zbigniew Klimont
    • 1
  • Wolfgang Schoepp
    • 1
  • Wim van Veen
    • 2
  • David Wiberg
    • 1
  • Fabian Wagner
    • 1
  1. 1.International Institute for Applied Systems AnalysisLaxenburgAustria
  2. 2.Centre for World Food StudiesVrije UniversiteitAmsterdamThe Netherlands
  3. 3.International Institute for Applied Systems AnalysisLaxenburgAustria
  4. 4.AIT Austrian Institute of TechnologyViennaAustria

Personalised recommendations