A Verified Runtime for a Verified Theorem Prover

  • Magnus O. Myreen
  • Jared Davis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6898)

Abstract

Theorem provers, such as ACL2, HOL, Isabelle and Coq, rely on the correctness of runtime systems for programming languages like ML, OCaml or Common Lisp. These runtime systems are complex and critical to the integrity of the theorem provers.

In this paper, we present a new Lisp runtime which has been formally verified and can run the Milawa theorem prover. Our runtime consists of 7,500 lines of machine code and is able to complete a 4 gigabyte Milawa proof effort. When our runtime is used to carry out Milawa proofs, less unverified code must be trusted than with any other theorem prover.

Our runtime includes a just-in-time compiler, a copying garbage collector, a parser and a printer, all of which are HOL4-verified down to the concrete x86 code. We make heavy use of our previously developed tools for machine-code verification. This work demonstrates that our approach to machine-code verification scales to non-trivial applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boyer, R.S., Moore, J.S.: A Computational Logic Handbook, 2nd edn. Academic Press, London (1997)MATHGoogle Scholar
  2. 2.
    Boyer, R.S., Hunt Jr., W.A.: Function memoization and unique object representation for ACL2 functions. In: ACL2 2006. ACM, New York (2006)Google Scholar
  3. 3.
    Chlipala, A.J.: A verified compiler for an impure functional language. In: Hermenegildo, M.V., Palsberg, J. (eds.) POPL. ACM, New York (2010)Google Scholar
  4. 4.
    Dargaye, Z., Leroy, X.: Mechanized verification of CPS transformations. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 211–225. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Davis, J.C.: A Self-Verifying Theorem Prover. PhD thesis, University of Texas at Austin (December 2009)Google Scholar
  6. 6.
    Fetzer, J.H.: Program verification: The very idea. Communications of the ACM 31(9), 1048–1063 (1988)CrossRefGoogle Scholar
  7. 7.
    Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF: A Mechanised Logic of Computation. LNCS, vol. 78. Springer, Heidelberg (1979)MATHGoogle Scholar
  8. 8.
    Guttman, J., Ramsdell, J., Wand, M.: VLISP: A verified implementation of Scheme. Lisp and Symbolic Computation 8(1/2), 5–32 (1995)CrossRefMATHGoogle Scholar
  9. 9.
    Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique. Technical Report CRC-053, SRI Cambridge, Cambridge, UK (1995)Google Scholar
  10. 10.
    Harrison, J.V.: Formalizing basic first order model theory. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 153–170. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Harrison, J.: Towards self-verification of HOL light. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 177–191. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Harrison, J.: HOL light: An overview. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  14. 14.
    Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler with a proof assistant. In: Morrisett, J.G., Jones, S.L.P. (eds.) POPL. ACM, New York (2006)Google Scholar
  15. 15.
    McCarthy, J.: Recursive functions of symbolic expressions and their computation by machine, part 1. Communications of the ACM 3(4), 184–195 (1960)CrossRefMATHGoogle Scholar
  16. 16.
    McCreight, A., Chevalier, T., Tolmach, A.P.: A certified framework for compiling and executing garbage-collected languages. In: Hudak, P., Weirich, S. (eds.) ICFP. ACM, New York (2010)Google Scholar
  17. 17.
    Myreen, M.O.: Verified just-in-time compiler on x86. In: Hermenegildo, M.V., Palsberg, J. (eds.) POPL. ACM, New York (2010)Google Scholar
  18. 18.
    Myreen, M.O., Gordon, M.J.C.: Verified LISP implementations on ARM, x86 and powerPC. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 359–374. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Myreen, M.O., Slind, K., Gordon, M.J.C.: Extensible proof-producing compilation. In: de Moor, O., Schwartzbach, M.I. (eds.) CC 2009. LNCS, vol. 5501, pp. 2–16. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem prover for first order logic. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 294–309. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Magnus O. Myreen
    • 1
  • Jared Davis
    • 2
  1. 1.Computer LaboratoryUniversity of CambridgeUK
  2. 2.Centaur Technology, Inc.AustinUSA

Personalised recommendations