Proving Valid Quantified Boolean Formulas in HOL Light

  • Ondřej Kunčar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6898)

Abstract

This paper describes the integration of Squolem, Quantified Boolean Formulas (QBF) solver, with the interactive theorem prover HOL Light. Squolem generates certificates of validity which are based on witness functions. The certificates are checked in HOL Light by constructing proofs based on these certificates. The presented approach allows HOL Light users to prove larger valid QBF problems than before and provides correctness checking of Squolem’s outputs based on the LCF approach. An error in Squolem was discovered thanks to the integration. Experiments show that the feasibility of the integration is very sensitive to implementation of HOL Light and used inferences. This resulted in improvements in HOL Light’s inference system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbarpour, B., Paulson, L.C.: MetiTarski: An Automatic Theorem Prover for Real-Valued Special Functions. J. Autom. Reasoning 44(3), 175–205 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Benedetti, M., Mangassarian, H.: QBF-Based Formal Verification: Experience and Perspectives, vol. 5, pp. 133–191 (2008)Google Scholar
  3. 3.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Böhme, S., Weber, T.: Fast LCF-Style Proof Reconstruction for Z3. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Kleine Büning, H., Zhao, X.: On Models for Quantified Boolean Formulas. In: Lenski, W. (ed.) Logic versus Approximation. LNCS, vol. 3075, pp. 18–32. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Dershowitz, N., Hanna, Z., Katz, J.: Bounded Model Checking with QBF. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 408–414. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: QBF Reasoning on Real-World Instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 105–121. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Gordon, M.: From LCF to HOL: a short history.. In: Plotkin, G.D., Stirling, C., Tofte, M. (eds.) Proof, Language, and Interaction, pp. 169–186. MIT Press, Cambridge (2000)Google Scholar
  9. 9.
    Harrison, J.: Binary Decision Diagrams as a HOL Derived Rule. Comput. J. 38(2), 162–170 (1995)CrossRefGoogle Scholar
  10. 10.
    Harrison, J.: Towards self-verification of HOL light. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 177–191. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Harrison, J.: The HOL Light theorem prover (2010), http://www.cl.cam.ac.uk/~jrh13/hol-light/
  12. 12.
    Harrison, J., Slind, K., Arthan, R.D.: HOL. In: Wiedijk, F. (ed.) The Seventeen Provers of the World. LNCS (LNAI), vol. 3600, pp. 11–19. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Harrison, J., Théry, L.: A skeptic’s approach to combining HOL and Maple. Journal of Automated Reasoning 21, 279–294 (1998)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    HOL contributors: HOL4 Kananaskis 6 source code (2010), http://hol.sourceforge.net (retreived February 6, 2011)
  15. 15.
    Hurd, J.: An LCF-Style Interface between HOL and First-Order Logic. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 134–138. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Hurd, J.: First-Order Proof Tactics in Higher-Order Logic Theorem Provers. In: Archer, M., Vito, B.D., Muñoz, C. (eds.) Design and Application of Strategies/Tactics in Higher Order Logics (STRATA 2003), Design and Application of Strategies/Tactics in Higher Order Logics (STRATA 2003), pp. 56–68, No. NASA/CP-2003-212448 in NASA Technical Reports (September 2003)Google Scholar
  17. 17.
    Jussila, T., Biere, A., Sinz, C., Kröning, D., Wintersteiger, C.M.: A First Step Towards a Unified Proof Checker for QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 201–214. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Kröning, D., Wintersteiger, C.: A file format for QBF certificates (2007), http://www.cprover.org/qbv/download/qbcformat.pdf (retreived February 6, 2011)
  19. 19.
    Meng, J., Paulson, L.C.: Translating Higher-Order Clauses to First-Order Clauses. J. Autom. Reasoning 40(1), 35–60 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Meyer, A., Stockmeyer, L.: Word Problems Requiring Exponential Time. In: Proc. 5th ACM Symp. on the Theory of Computing, pp. 1–9 (1973)Google Scholar
  21. 21.
    Narizzano, M., Peschiera, C., Pulina, L., Tacchella, A.: Evaluating and certifying QBFs: A comparison of state-of-the-art tools. AI Commun. 22(4), 191–210 (2009)MathSciNetMATHGoogle Scholar
  22. 22.
    Otwell, C., Remshagen, A., Truemper, K.: An Effective QBF Solver for Planning Problems.. In: Arabnia, H.R., Joshua, R., Ajwa, I.A., Gravvanis, G.A. (eds.) MSV/AMCS, pp. 311–316. CSREA Press, Boca Raton (2004)Google Scholar
  23. 23.
    Paulson, L.C., Susanto, K.W.: Source-Level Proof Reconstruction for Interactive Theorem Proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 232–245. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Weber, T.: Validating QBF Invalidity in HOL4. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 466–480. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Weber, T., Amjad, H.: Efficiently checking propositional refutations in HOL theorem provers. Journal of Applied Logic 7(1), 26–40 (2009); special Issue: Empirically Successful Computerized ReasoningMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ondřej Kunčar
    • 1
  1. 1.Faculty of Mathematics and Physics Automated Reasoning GroupCharles University in PragueCzech Republic

Personalised recommendations