ITP 2011: Interactive Theorem Proving pp 103-118

Point-Free, Set-Free Concrete Linear Algebra

• Georges Gonthier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6898)

Abstract

Abstract linear algebra lets us reason and compute with collections rather than individual vectors, for example by considering entire subspaces. Its classical presentation involves a menagerie of different settheoretic objects (spaces, families, mappings), whose use often involves tedious and non-constructive pointwise reasoning; this is in stark contrast with the regularity and effectiveness of the matrix computations hiding beneath abstract linear algebra. In this paper we show how a simple variant of Gaussian elimination can be used to model abstract linear algebra directly, using matrices only to represent all categories of objects, with operations such as subspace intersection and sum. We can even provide effective support for direct sums and subalgebras. We have formalized this work in Coq, and used it to develop all of the group representation theory required for the proof of the Odd Order Theorem, including results such as the Jacobson Density Theorem, Clifford’s Theorem, the Jordan-Holder Theorem for modules, theWedderburn Structure Theorem for semisimple rings (the basis for character theory).

Keywords

Formalization of Mathematics Linear Algebra Module Theory Algebra Type inference Coq SSReflect

References

1. 1.
Lang, S.: Algebra. Springer, Heidelberg (2002)
2. 2.
Gorenstein, D.: Finite groups, 2nd edn. Chelsea, New York (1980)
3. 3.
Bender, H., Glauberman, G.: Local analysis for the Odd Order Theorem. London Mathematical Society Lecture Note Series, vol. 188. Cambridge University Press, Cambridge (1994)
4. 4.
Peterfalvi, T.: Character Theory for the Odd Order Theorem. London Mathematical Society Lecture Note Series, vol. 272. Cambridge University Press, Cambridge (2000)
5. 5.
Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A modular formalisation of finite group theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)
6. 6.
Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical big operators. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 86–101. Springer, Heidelberg (2008)
7. 7.
Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)
8. 8.
Pottier, L.: User contributions in Coq, Algebra (1999), http://coq.inria.fr/contribs/Algebra.html
9. 9.
Blanqui, F., Coupet-grimal, S., Delobel, W., Koprowski, A.: Color: a Coq library on rewriting and termination. In: Eighth Int. Workshop on Termination, WST (2006); to appear in MSCSGoogle Scholar
10. 10.
Rudnicki, P., Schwarzweller, C., Trybulec, A.: Commutative algebra in the Mizar system. J. Symb. Comput. 32(1), 143–169 (2001)
11. 11.
Obua, S.: Proving Bounds for Real Linear Programs in Isabelle/HOL. Theorem Proving in Higher-Order Logics, 227–244 (2005)Google Scholar
12. 12.
Harrison, J.: A HOL Theory of Euclidian Space. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005)
13. 13.
Cowles, J., Gamboa, R., Baalen, J.V.: Using ACL2 Arrays to Formalize Matrix Algebra. In: ACL2 Workshop (2003)Google Scholar
14. 14.
Stein, J.: Documentation for the formalization of Linerar Agebra, http://www.cs.ru.nl/~jasper/
15. 15.
Coq development team: The Coq Proof Assistant Reference Manual, version 8.3 (2010)Google Scholar
16. 16.
Gonthier, G., Mahboubi, A.: A small scale reflection extension for the Coq system. INRIA Technical report, http://hal.inria.fr/inria-00258384
17. 17.
Sozeau, M., Oury, N.: First-Class Type Classes. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg (2008)
18. 18.
Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. Journal of Functional Programming 13(2), 261–293 (2003)