Point-Free, Set-Free Concrete Linear Algebra

  • Georges Gonthier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6898)

Abstract

Abstract linear algebra lets us reason and compute with collections rather than individual vectors, for example by considering entire subspaces. Its classical presentation involves a menagerie of different settheoretic objects (spaces, families, mappings), whose use often involves tedious and non-constructive pointwise reasoning; this is in stark contrast with the regularity and effectiveness of the matrix computations hiding beneath abstract linear algebra. In this paper we show how a simple variant of Gaussian elimination can be used to model abstract linear algebra directly, using matrices only to represent all categories of objects, with operations such as subspace intersection and sum. We can even provide effective support for direct sums and subalgebras. We have formalized this work in Coq, and used it to develop all of the group representation theory required for the proof of the Odd Order Theorem, including results such as the Jacobson Density Theorem, Clifford’s Theorem, the Jordan-Holder Theorem for modules, theWedderburn Structure Theorem for semisimple rings (the basis for character theory).

Keywords

Formalization of Mathematics Linear Algebra Module Theory Algebra Type inference Coq SSReflect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lang, S.: Algebra. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  2. 2.
    Gorenstein, D.: Finite groups, 2nd edn. Chelsea, New York (1980)MATHGoogle Scholar
  3. 3.
    Bender, H., Glauberman, G.: Local analysis for the Odd Order Theorem. London Mathematical Society Lecture Note Series, vol. 188. Cambridge University Press, Cambridge (1994)MATHGoogle Scholar
  4. 4.
    Peterfalvi, T.: Character Theory for the Odd Order Theorem. London Mathematical Society Lecture Note Series, vol. 272. Cambridge University Press, Cambridge (2000)CrossRefMATHGoogle Scholar
  5. 5.
    Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A modular formalisation of finite group theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical big operators. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 86–101. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Pottier, L.: User contributions in Coq, Algebra (1999), http://coq.inria.fr/contribs/Algebra.html
  9. 9.
    Blanqui, F., Coupet-grimal, S., Delobel, W., Koprowski, A.: Color: a Coq library on rewriting and termination. In: Eighth Int. Workshop on Termination, WST (2006); to appear in MSCSGoogle Scholar
  10. 10.
    Rudnicki, P., Schwarzweller, C., Trybulec, A.: Commutative algebra in the Mizar system. J. Symb. Comput. 32(1), 143–169 (2001)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Obua, S.: Proving Bounds for Real Linear Programs in Isabelle/HOL. Theorem Proving in Higher-Order Logics, 227–244 (2005)Google Scholar
  12. 12.
    Harrison, J.: A HOL Theory of Euclidian Space. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Cowles, J., Gamboa, R., Baalen, J.V.: Using ACL2 Arrays to Formalize Matrix Algebra. In: ACL2 Workshop (2003)Google Scholar
  14. 14.
    Stein, J.: Documentation for the formalization of Linerar Agebra, http://www.cs.ru.nl/~jasper/
  15. 15.
    Coq development team: The Coq Proof Assistant Reference Manual, version 8.3 (2010)Google Scholar
  16. 16.
    Gonthier, G., Mahboubi, A.: A small scale reflection extension for the Coq system. INRIA Technical report, http://hal.inria.fr/inria-00258384
  17. 17.
    Sozeau, M., Oury, N.: First-Class Type Classes. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. Journal of Functional Programming 13(2), 261–293 (2003)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Georges Gonthier
    • 1
  1. 1.Microsoft Research CambridgeUK

Personalised recommendations