Advertisement

Classical and Quantum Fields on Lorentzian Manifolds

  • Christian Bär
  • Nicolas Ginoux
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 17)

Abstract

We construct bosonic and fermionic locally covariant quantum field theories on curved backgrounds for large classes of fields. We investigate the quantum field and n-point functions induced by suitable states.

Keywords

Vector Bundle Dirac Operator Clifford Algebra Wave Operator Lorentzian Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araki, H.: On quasifree states of CAR and Bogoliubov automorphisms. Publ. Res. Inst. Math. Sci. 6, 385–442 (1970/71)Google Scholar
  2. 2.
    Bär, C., Becker, C.: Cstar-algebras. In: Bär,C., Fredenhagen, K. (eds.) Quantum Field Theory on Curved Spacetimes, Lecture Notes in Physics, vol. 786, pp. 1–37. Springer, Berlin (2009)CrossRefGoogle Scholar
  3. 3.
    Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-Riemannian and spin geometry. Math. Z. 249, 545–580 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. EMS, Zürich (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Baum, H.: Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten. Teubner, Leipzig (1981)zbMATHGoogle Scholar
  6. 6.
    Bernal, A.N., Sánchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Comm. Math. Phys. 257, 43–50 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bernal,A.N., Sánchez, M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183–197 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Branson, T., Hijazi, O.: Bochner–Weitzenböck formulas associated with the Rarita–Schwinger operator. Int. J. Math. 13, 137–182 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, I–II. Texts and Monographs in Physics, 2nd edn. Springer, Berlin (1997)Google Scholar
  10. 10.
    Bröcker, T., tom Dieck, T.: Representations of Compact Lie Groups. Graduate Texts in Mathematics, vol. 98, Springer, New York (1995)Google Scholar
  11. 11.
    Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle—a new paradigm for local quantum field theory. Comm. Math. Phys. 237, 31–68 (2003)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Buchdahl, H.A.: On the compatibility of relativistic wave equations in Riemann spaces. II. J. Phys. A 15(1982), 1–5.MathSciNetGoogle Scholar
  13. 13.
    Buchdahl, H.A.: On the compatibility of relativistic wave equations in Riemann spaces. III. J. Phys. A 15, 1057–1062 (1982)MathSciNetGoogle Scholar
  14. 14.
    Dappiaggi, C., Hack, T.-P., Pinamonti, N.: The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensors. Rev. Math. Phys. 21, 1241–1312 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Dappiaggi, C., Moretti, V., Pinamonti, N.: Distinguished quantum states in a class of cosmological spacetimes and their Hadamard property. J. Math. Phys. 50, 062304, 38 pp (2009)Google Scholar
  16. 16.
    Dappiaggi, C., Pinamonti, N., Porrmann, M.: Local causal structures, Hadamard states and the principle of local covariance in quantum field theory. arXiv:1001.0858 Google Scholar
  17. 17.
    Dimock, J.: Algebras of local observables on a manifold. Comm. Math. Phys. 77, 219–228 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Dimock, J.: Dirac quantum fields on a manifold. Trans. Am. Math. Soc. 269, 133–147 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Fewster, C.J., Verch, R.: A quantum weak energy inequality for Dirac fields in curved spacetime. Comm. Math. Phys. 225(2002), 331–359.CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Furlani, E.: Quantization of massive vector fields in curved space-time. J. Math. Phys. 40, 2611–2626 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Geroch, R.P.: Domain of dependence. J. Math. Phys. 11, 437–449 (1970)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Gibbons, G.W.: A note on the Rarita–Schwinger equation in a gravitational background. J. Phys. A 9, 145–148 (1976)CrossRefGoogle Scholar
  23. 23.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 256. Springer, Berlin (1990)Google Scholar
  24. 24.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators. III. Pseudodifferential Operators. Grundlehren der Mathematischen Wissenschaften, vol. 274. Springer, Berlin (1985)Google Scholar
  25. 25.
    Hollands, S., Wald, R.M.: Axiomatic quantum field theory in curved spacetime. Comm. Math. Phys. 293, 85–125 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Kay, B.S.: Linear spin-zero quantum fields in external gravitational and scalar fields. Comm. Math. Phys. 62, 55–70 (1978)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Lawson, H.B., Michelsohn, M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)zbMATHGoogle Scholar
  28. 28.
    Mühlhoff, R.: Higher spin fields on curved spacetimes. Diplomarbeit, Universität Leipzig (2007)Google Scholar
  29. 29.
    Mühlhoff, R.: Cauchy problem and Green’s functions for first order differential operators and algebraic quantization. J. Math. Phys. 52, 022303, 7 pp (2011)Google Scholar
  30. 30.
    O’Neill, B.: Semi-Riemannian Geometry. Academic Press, San Diego (1983)zbMATHGoogle Scholar
  31. 31.
    Plymen, R.J., Robinson, P.L.: Spinors in Hilbert Space. Cambridge Tracts in Mathematics, vol. 114. Cambridge University Press, Cambridge (1994)Google Scholar
  32. 32.
    Radzikowski, M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Comm. Math. Phys. 179, 529–553 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Rarita, W., Schwinger, J.: On a theory of particles with half-integral spin. Phys. Rev. 60, 61 (1941)CrossRefzbMATHGoogle Scholar
  34. 34.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, Orlando (1980)zbMATHGoogle Scholar
  35. 35.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, Orlando (1975)zbMATHGoogle Scholar
  36. 36.
    Sahlmann, H., Verch, R.: Passivity and microlocal spectrum condition. Comm. Math. Phys. 214, 705–731 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Sahlmann, H., Verch, R.: Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys. 13, 1203–1246 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Sanders, K.: The locally covariant Dirac field. Rev. Math. Phys. 22, 381–430 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Strohmaier, A.: The Reeh–Schlieder property for quantum fields on stationary spacetimes. Comm. Math. Phys. 215, 105–118 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Taylor, M.E.: Partial Differential Equations I—Basic Theory. Springer, New York, Berlin, Heidelberg (1996)Google Scholar
  41. 41.
    Verch, R.: A spin-statistics theorem for quantum fields on curved spacetime manifolds in a generally covariant framework. Comm. Math. Phys. 223, 261–288 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. University of Chicago Press, Chicago (1994)zbMATHGoogle Scholar
  43. 43.
    Wang, McK.Y.: Preserving parallel spinors under metric deformations. Indiana Univ. Math. J. 40, 815–844 (1991)Google Scholar
  44. 44.
    V. Wünsch: Cauchy’s problem and Huygens’ principle for relativistic higher spin wave equations in an arbitrary curved space-time. Gen. Relat. Gravit. 17, 15–38 (1985)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für MathematikUniversität PotsdamPotsdamGermany
  2. 2.Fakultät für MathematikUniversität RegensburgRegensburgGermany

Personalised recommendations