Advertisement

Linking Developmental Propensity Score to Fuzzy Sets: A New Perspective, Applications and Generalizations

  • Xuecheng Liu
  • Richard E. Tremblay
  • Sylvana Cote
  • Rene Carbonneau
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 100)

Abstract

First, we outline the group-based trajectory models for longitudinal data; second, we briefly describe the concept of propensity scores based on these models; third, we give a new perspective of propensity scores in fuzzy sets; fourth, we apply operations of fuzzy sets to propensity scores; fifth, we generalize propensity scores to trajectories based on fuzzy and possibilistic clusterings.

Keywords

Group-based trajectory modeling Group membership posterior probability Propensity score Fuzzy set Operation of fuzzy sets Fuzzy clustering Possibilistic clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algoritms. Plenum Press, New York (1981)Google Scholar
  2. 2.
    Dubois, D., et al.: Probability-Possibility Transformations, Triangular Fuzzy Sets, and Probabilistic Inequalities. Reliable Computing 10, 273–297 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Garcia-Laencina, P.J., et al.: Pattern classification with missing data: a review. Neural Computing and Applications 19, 263–282 (2010)CrossRefGoogle Scholar
  4. 4.
    Krishnapuram, R., et al.: A possibilistic approach to clustering. IEEE Trans. on Fuzzy Systems 1, 98–110 (1993)CrossRefGoogle Scholar
  5. 5.
    Krishnapuram, R., et al.: The possibilistic C-Means algorithm: insights and recommendations. IEEE Trans. on Fuzzy Systems 4, 385–393 (1996)CrossRefGoogle Scholar
  6. 6.
    Liu, X.: Entropy, distance measure and similarity measure of fuzzy sets and their relations. Fuzzy Sets and Systems 52, 305–318 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Liu, X. et al.: Measuring individual propensity to follow a developmental trajectory. University of Montreal, Technical report (2011)Google Scholar
  8. 8.
    Nagin, D.S.: Analyzing Developmental Trajectories: Semi-Parametric, Group-Based Approach. Psychological Methods 4, 139–177 (1999)CrossRefGoogle Scholar
  9. 9.
    Nagin, D.S.: Group-based Modeling of Development. Harvard University Press, Cambridge (2005)Google Scholar
  10. 10.
    Rubin, D.B.: Inference and missing data (with discussion). Biometrika 63, 581–592 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Zadeh, L.A.: Fuzzy Sets. Inf. Control 8, 338–353 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Zadeh, L.A.: Fuzzy Set Theoretic Interpretation Linguistic Hedges. J. of Cybernetics 2, 4–34 (1972)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xuecheng Liu
    • 1
  • Richard E. Tremblay
    • 1
    • 2
  • Sylvana Cote
    • 1
    • 3
    • 4
  • Rene Carbonneau
    • 1
    • 5
  1. 1.Research Unit on Children’s Psychosocial MaladjustmentUniversity of MontrealCanada
  2. 2.School of Public Health and Population SciencesUniversity College DublinIreland
  3. 3.International Laboratory for Child and Adolescent Mental HealthUniversity of MontrealCanada
  4. 4.INSERM U669France
  5. 5.Department of Pediatrics, Faculty of MedicineUniversity of MontrealCanada

Personalised recommendations