Advertisement

Person Re-identification Based on Global Color Context

  • Yinghao Cai
  • Matti Pietikäinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6468)

Abstract

In this paper, we present a new solution to the problem of person re-identification. Person re-identification means to match observations of the same person across different time and possibly different cameras. The appearance based person re-identification must deal with several challenges such as variations of illumination conditions, poses and occlusions. Our proposed method inspires from the spirit of self-similarity. Self-similarity is an attractive property in visual recognition. Instead of comparing image descriptors between two images directly, the self-similarity measures how similar they are to a neighborhood of themselves. The self-similarities of image patterns within the image are modeled in two different ways in the proposed Global Color Context (GCC) method. The spatial distributions of self-similarities w.r.t. color words are combined to characterize the appearance of pedestrians. Promising results are obtained in the public ETHZ database compared with state-of-art performances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferencz, A., Learned-Miller, E.G., Malik, J.: Learning to locate informative features for visual identification. International Journal of Computer Vision 77, 3–24 (2008)CrossRefGoogle Scholar
  2. 2.
    Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: Proceedings of Computer Vision and Pattern Recognition (2010)Google Scholar
  4. 4.
    Shet, V.D., Harwood, D., Davis, L.S.: Multivalued default logic for identity maintenance in visual surveillance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 119–132. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Javed, O., Rasheed, Z., Shafique, K., Shah, M.: Tracking across multiple cameras with disjoint views. In: Proceedings of International Conference on Computer Vision, pp. 952–957 (2003)Google Scholar
  6. 6.
    Junejo, I.N., Dexter, E., Laptev, I., Perez, P.: View-independent action recognition from temporal self-similarities. IEEE Transactions on Pattern Analysis and Machine Intelligence 99 (2010)Google Scholar
  7. 7.
    Shechtman, E., Irani, M.: Matching local self-similarities across images and videos. In: Proceedings of Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  8. 8.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 971–987 (2002)Google Scholar
  9. 9.
    Schwartz, W.R., Davis, L.S.: Learning discriminative appearance-based models using partial least squares. In: Proceedings of the XXII Brazilian Symposium on Computer Graphics and Image Processing (2009)Google Scholar
  10. 10.
    Gilbert, A., Bowden, R.: Tracking objects across cameras by incrementally learning inter-camera colour calibration and patterns of activity. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 125–136. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Javed, O., Shafique, K., Shah, M.: Appearance modeling for tracking in multiple non-overlapping cameras. In: Proceedings of Computer Vision and Pattern Recognition, pp. 26–33 (2005)Google Scholar
  12. 12.
    van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32 (2010)Google Scholar
  13. 13.
    van de Weijer, J., Schmid, C.: Coloring local feature extraction. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 334–348. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Burghouts, G.J., Geusebroek, J.M.: Performance evaluation of local colour invariants. Computer Vision and Image Understanding 113, 48–62 (2009)CrossRefGoogle Scholar
  15. 15.
    Schwartz, W., Kembhavi, A., Harwood, D., Davis, L.: Human detection using partial least squares analysis. In: Proceedings of International Conference on Computer Vision (2009)Google Scholar
  16. 16.
    Takala, V., Cai, Y., Pietikäinen, M.: Boosting clusters of samples for sequence matching in camera networks. In: Proceedings of International Conference on Pattern Recognition (2010)Google Scholar
  17. 17.
    van Gemert, J.C., Veenman, C.J., Smeulders, A.W.M., Geusebroek, J.M.: Visual word ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1271–1283 (2010)CrossRefGoogle Scholar
  18. 18.
    Ess, A., Leibe, B., Schindler, K., Gool, L.V.: A mobile vision system for robust multi-person tracking. In: Proceedings of Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yinghao Cai
    • 1
  • Matti Pietikäinen
    • 1
  1. 1.Machine Vision Group, Department of Electrical and Information EngineeringUniversity of OuluFinland

Personalised recommendations