Advertisement

Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups

  • Masayuki Abe
  • Jens Groth
  • Kristiyan Haralambiev
  • Miyako Ohkubo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6841)

Abstract

Structure-preserving signatures are signatures defined over bilinear groups that rely on generic group operations. In particular, the messages and signatures consist of group elements and the verification of signatures consists of evaluating pairing product equations. Due to their purist nature structure- preserving signatures blend well with other pairing-based protocols.

We show that structure-preserving signatures must consist of at least 3 group elements when the signer uses generic group operations. Usually, the generic group model is used to rule out classes of attacks by an adversary trying to break a cryptographic assumption. In contrast, here we use the generic group model to prove a lower bound on the complexity of digital signature schemes.

We also give constructions of structure-preserving signatures that consist of 3 group elements only. This improves significantly on previous structure-preserving signatures that used 7 group elements and matches our lower bound. Our structure-preserving signatures have additional nice properties such as strong existential unforgeability and can sign multiple group elements at once.

Keywords

Structure-Preservation Digital Signatures Generic Group Model 

References

  1. [AFG+10]
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)Google Scholar
  2. [AHO10]
    Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for modular protocol design. Cryptology ePrint Archive, Report 2010/133 (2010)Google Scholar
  3. [BCK10]
    Bangerter, E., Camenisch, J., Krenn, S.: Efficiency limitations for Σ-protocols for group homomorphisms. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 553–571. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. [CL02]
    Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. [CL04]
    Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)Google Scholar
  6. [CLY09]
    Cathalo, J., Libert, B., Yung, M.: Group encryption: Non-interactive realization in the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 179–196. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. [Fuc09]
    Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application to round-optimal blind signatures. Cryptology ePrint Archive, Report 2009/320 (2009)Google Scholar
  8. [Fuc11]
    Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. [FV10]
    Fuchsbauer, G., Vergnaud, D.: Fair blind signatures without random oracles. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 16–33. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. [GGK03]
    Gennaro, R., Gertner, Y., Katz, J.: Lower bounds on the efficiency of encryption and digital signature schemes. In: STOC, pp. 417–425 (2003)Google Scholar
  11. [GH08]
    Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. [GO94]
    Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. Journal of Cryptology 7(1), 1–32 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  13. [GPS08]
    Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathematics 156(16), 3113–3121 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. [Gro06]
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. [Gro09]
    Groth, J.: Homomorphic trapdoor commitments to group elements. Cryptology ePrint Archive, Report 2009/007 (2009)Google Scholar
  16. [GS08]
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. [Nec94]
    Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm. Mat. Zametki 55(2), 91–101 (1994)MathSciNetGoogle Scholar
  18. [OS08]
    Ostrovsky, R., Skeith III, W.E.: Communication complexity in algebraic two-party protocols. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 379–396. Springer, Heidelberg (2008)Google Scholar
  19. [Sho97]
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)Google Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Masayuki Abe
    • 1
  • Jens Groth
    • 2
  • Kristiyan Haralambiev
    • 3
  • Miyako Ohkubo
    • 4
  1. 1.Information Sharing Platform LaboratoriesNTT CorporationJapan
  2. 2.University College LondonUK
  3. 3.Computer Science DepartmentNew York UniversityUS
  4. 4.National Institute of Information and Communications TechnologyJapan

Personalised recommendations