Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups

  • Masayuki Abe
  • Jens Groth
  • Kristiyan Haralambiev
  • Miyako Ohkubo
Conference paper

DOI: 10.1007/978-3-642-22792-9_37

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6841)
Cite this paper as:
Abe M., Groth J., Haralambiev K., Ohkubo M. (2011) Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups. In: Rogaway P. (eds) Advances in Cryptology – CRYPTO 2011. CRYPTO 2011. Lecture Notes in Computer Science, vol 6841. Springer, Berlin, Heidelberg


Structure-preserving signatures are signatures defined over bilinear groups that rely on generic group operations. In particular, the messages and signatures consist of group elements and the verification of signatures consists of evaluating pairing product equations. Due to their purist nature structure- preserving signatures blend well with other pairing-based protocols.

We show that structure-preserving signatures must consist of at least 3 group elements when the signer uses generic group operations. Usually, the generic group model is used to rule out classes of attacks by an adversary trying to break a cryptographic assumption. In contrast, here we use the generic group model to prove a lower bound on the complexity of digital signature schemes.

We also give constructions of structure-preserving signatures that consist of 3 group elements only. This improves significantly on previous structure-preserving signatures that used 7 group elements and matches our lower bound. Our structure-preserving signatures have additional nice properties such as strong existential unforgeability and can sign multiple group elements at once.


Structure-Preservation Digital Signatures Generic Group Model 

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Masayuki Abe
    • 1
  • Jens Groth
    • 2
  • Kristiyan Haralambiev
    • 3
  • Miyako Ohkubo
    • 4
  1. 1.Information Sharing Platform LaboratoriesNTT CorporationJapan
  2. 2.University College LondonUK
  3. 3.Computer Science DepartmentNew York UniversityUS
  4. 4.National Institute of Information and Communications TechnologyJapan

Personalised recommendations