Position-Based Quantum Cryptography: Impossibility and Constructions

  • Harry Buhrman
  • Nishanth Chandran
  • Serge Fehr
  • Ran Gelles
  • Vipul Goyal
  • Rafail Ostrovsky
  • Christian Schaffner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6841)

Abstract

The aim of position-based cryptography is to use the geographical position of a party as its only credential. In this work, we study position-based cryptography in the quantum setting.

We show that if collaborating adversaries are allowed to pre-share an arbitrarily large entangled quantum state, then position-verification, and as a consequence position-based cryptography in general, is impossible (also) in the quantum setting.

To this end, we prove that with the help of sufficient pre-shared entanglement, any non-local quantum computation, i.e., any computation that involves quantum inputs from two parties at different locations, can be performed instantaneously and without any communication, up to local corrections that need to be applied to the outputs. The latter can be understood in that the parties obtain their respective outputs “encrypted”, where each corresponding encryption key is known by the opposite party. This result generalizes to any number of parties, and it implies that any non-local quantum computation can be performed using a single round of mutual communication (in which the parties exchange the encryption keys), and that any position-verification scheme can be broken, assuming sufficient pre-shared entanglement among the adversaries.

On the positive side, we show that for adversaries that are restricted to not share any entangled quantum states, secure position-verification is achievable. Jointly, these results suggest the interesting question whether secure position-verification is possible in case of a bounded amount of entanglement. Our positive result can be interpreted as resolving this question in the simplest case, where the bound is set to zero.

References

  1. 1.
    Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position based cryptography. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 391–407. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Brands, S., Chaum, D.: Distance-bounding protocols. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)Google Scholar
  3. 3.
    Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In: WiSe 2003, pp. 1–10 (2003)Google Scholar
  4. 4.
    Vora, A., Nesterenko, M.: Secure location verification using radio broadcast. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 369–383. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bussard, L.: Trust Establishment Protocols for Communicating Devices. PhD thesis, Eurecom-ENST (2004)Google Scholar
  6. 6.
    Capkun, S., Hubaux, J.P.: Secure positioning of wireless devices with application to sensor networks. In: IEEE INFOCOM, 1917–1928 (2005)Google Scholar
  7. 7.
    Singelee, D., Preneel, B.: Location verification using secure distance bounding protocols. In: IEEE MASS’10 (2005)Google Scholar
  8. 8.
    Zhang, Y., Liu, W., Fang, Y., Wu, D.: Secure localization and authentication in ultra-wideband sensor networks. IEEE Journal on Selected Areas in Communications 24, 829–835 (2006)CrossRefGoogle Scholar
  9. 9.
    Capkun, S., Cagalj, M., Srivastava, M.: Secure localization with hidden and mobile base stations. In: IEEE INFOCOM (2006)Google Scholar
  10. 10.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Vaidman, L.: Instantaneous measurement of nonlocal variables. Phys. Rev. Lett. 90(1), 010402 (2003) Google Scholar
  12. 12.
    Kent, A., Munro, W., Spiller, T., Beausoleil, R.: Tagging systems, US patent nr 2006/0022832 (2006)Google Scholar
  13. 13.
    Kent, A., Munro, B., Spiller, T.: Quantum tagging: Authenticating location via quantum information and relativistic signalling constraints, arXiv/quant-ph:1008.2147 (2010)Google Scholar
  14. 14.
    Malaney, R.A.: Location-dependent communications using quantum entanglement. Phys. Rev. A 81(4), 042319 (2010)Google Scholar
  15. 15.
    Malaney, R.A.: Quantum location verification in noisy channels, arXiv/quant-ph:1004.2689 (2010)Google Scholar
  16. 16.
    Chandran, N., Fehr, S., Gelles, R., Goyal, V., Ostrovsky, R.: Position-based quantum cryptography, arXiv/quant-ph:1005.1750 (2010)Google Scholar
  17. 17.
    Lau, H.K., Lo, H.K.: Insecurity of position-based quantum-cryptography protocols against entanglement attacks. Phys. Rev. A 83(1), 012322 (2011)CrossRefGoogle Scholar
  18. 18.
    Kent, A.: Quantum tagging with cryptographically secure tags, arXiv/quant-ph:1008.5380 (2010)Google Scholar
  19. 19.
    Clark, S.R., Connor, A.J., Jaksch, D., Popescu, S.: Entanglement consumption of instantaneous nonlocal quantum measurements. New Journal of Physics 12(8), 083034 (2010)CrossRefGoogle Scholar
  20. 20.
    Beigi, S., Koenig, R.: Simplified instantaneous non-local quantum computation with applications to position-based cryptography, arXiv/quant-ph:1101.1065 (2011)Google Scholar
  21. 21.
    Ishizaka, S., Hiroshima, T.: Asymptotic teleportation scheme as a universal programmable quantum processor. Phys. Rev. Lett. 101(24), 240501 (2008)CrossRefGoogle Scholar
  22. 22.
    Ishizaka, S., Hiroshima, T.: Quantum teleportation scheme by selecting one of multiple output ports. Phys. Rev. A 79(4), 042306 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum cryptographic ranging. Journal of Optics B 4(4), 042319 (2002)Google Scholar
  24. 24.
    Renes, J., Boileau, J.: Conjectured strong complementary information tradeoff. Phys. Rev. Let. 103(2), 020402 (2009)CrossRefGoogle Scholar
  25. 25.
    Buhrman, H., Chandran, N., Fehr, S., Gelles, R., Goyal, V., Ostrovsky, R., Schaffner, C.: Position-Based Quantum Cryptography: Impossibility and Constructions. Full version of this paper (2010), http://arxiv.org/abs/1009.2490
  26. 26.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  27. 27.
    Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nature Physics (2010)Google Scholar
  28. 28.
    Damgård, I., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded quantum-storage model. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 449–458. IEEE, Los Alamitos (2005)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Harry Buhrman
    • 1
    • 2
  • Nishanth Chandran
    • 3
  • Serge Fehr
    • 1
  • Ran Gelles
    • 3
  • Vipul Goyal
    • 4
  • Rafail Ostrovsky
    • 3
  • Christian Schaffner
    • 2
    • 1
  1. 1.Centrum Wiskunde & Informatica (CWI)The Netherlands
  2. 2.University of AmsterdamThe Netherlands
  3. 3.University of California (UCLA)USA
  4. 4.Microsoft ResearchBangaloreIndia

Personalised recommendations