Advertisement

Geometrically Nonlinear Continuum Thermomechanics Coupled to Diffusion: A Framework for Case II Diffusion

  • Andrew T. McBride
  • Swantje Bargmann
  • Paul Steinmann
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 59)

Abstract

This chapter introduces a geometrically nonlinear, continuum thermomechanical framework for case II diffusion: a type of non-Fickian diffusion characterized by the wave-like propagation of a low-molecular weight solvent in a polymeric solid. The key objective of this contribution is to derive the coupled system of governing equations describing case II diffusion from fundamental balance principles. A general form for the Helmholtz energy is proposed and the resulting constitutive laws are derived from logical, thermodynamically consistent argumentation. The chapter concludes by comparing the model developed here to various others in the literature. The approach adopted to derive the governing equations is not specific to case II diffusion, rather it encompasses a wide range of applications wherein heat conduction, species diffusion and finite inelastic effects are coupled. The presentation is thus applicable to the generality of models for non-Fickian diffusion: an area of increasing research interest.

Keywords

Constitutive Relation Glassy Polymer Deborah Number Species Mass Helmholtz Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aifantis, E.C.: On the problem of diffusion in solids. Acta Mechanica 37, 265–296 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Alfrey, T., Gurnee, E.F., Lloyd, W.G.: Diffusion in glassy polymers. Journal of Polymer Science Part C 12, 249–261 (1966)CrossRefGoogle Scholar
  3. 3.
    Bargmann, S., McBride, A.T., Steinmann, P.: Models of solvent penetration in glassy polymers with an emphasis on case II diffusion. A comparative review. Applied Mechanics Reviews, doi:10.1115/1.4003955 (in press)Google Scholar
  4. 4.
    Cohen, D.S.: Theoretical models for diffusion in glassy polymers. Journal of Polymer Science: Polymer Physics Edition 2(22), 1001–1009 (1984)Google Scholar
  5. 5.
    Cohen, D.S., White, A.B.: Sharp fronts due to diffusion and stress at the glass transition in polymers. Journal of Polymer Science: Part B: Polymer Physics 27, 1731–1747 (1989)CrossRefGoogle Scholar
  6. 6.
    Cottrell, A.H.: Effect of solute atoms on the behavior of dislocations. In: Wills, H.H. (ed.) Report of a Conference on Strength of Solids, pp. 30–36. The Physical society, University of Bristol, London (1948)Google Scholar
  7. 7.
    El Afif, A., Grmela, M.: Non-Fickian mass transport in polymers. Journal of Rheology 46(3), 591–628 (2002)CrossRefGoogle Scholar
  8. 8.
    Fick, A.: Über Diffusion. Poggendorff’s Annalen der Physik und Chemie 94, 58–86 (1855)Google Scholar
  9. 9.
    Flory, P.J.: Thermodynamics of high polymer solutions. Journal of Chemical Physics 9(8), 66–661 (1941)CrossRefGoogle Scholar
  10. 10.
    Govindjee, S., Simo, J.C.: Coupled stress–diffusion: Case II. Journal of the Mechanics and Physics of Solids 41(5), 863–887 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Holzapfel, G.A., Simo, J.C.: Entropy elasticity of isotropic rubber-like solids at finite strains. Computer Methods in Applied Mechanics and Engineering 132(1-2), 17–44 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Holzapfel, G.A., Simo, J.C.: A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. International Journal of Solids and Structures 33(20-22), 3019–3034 (1996)CrossRefzbMATHGoogle Scholar
  13. 13.
    Huggins, M.L.: Solutions of long chain compounds. Journal of Chemical Physics 9, 440 (1941)CrossRefGoogle Scholar
  14. 14.
    Javili, A., Steinmann, P.: On thermomechanical solids with boundary structures. International Journal of Solids and Structures 47(24), 3245–3253 (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kalospiros, N.S., Ocone, R., Astarita, G., Meldon, J.H.: Analysis of anomalous diffusion and relaxation in solid polymers. Industrial & Engineering Chemistry Research 30, 851–864 (1991)CrossRefGoogle Scholar
  16. 16.
    Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice–Hall Inc., Englewood Cliffs (1969)Google Scholar
  17. 17.
    Maxwell, J.C.: On the dynamical theory of gases. Philosophical Transactions of the Royal Society of London 157, 49–88 (1867)CrossRefGoogle Scholar
  18. 18.
    McBride, A.T., Javili, A., Steinmann, P., Bargmann, S.: Geometrically nonlinear continuum thermomechanics with surface energies coupled to diffusion (2011) (review)Google Scholar
  19. 19.
    Simo, J.C., Hughes, T.J.R.: Computational inelasticity. In: Marsden, J.E., Wiggins, S., Sirovich, L. (eds.) Interdisciplinary Applied Mathematics, vol. 7. Springer, Heidelberg (1998)Google Scholar
  20. 20.
    Steinmann, P.: On boundary potential energies in deformational and configurational mechanics. Journal of the Mechanics and Physics of Solids 56, 772–800 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Steinmann, P., McBride, A., Bargmann, S., Javili, A.: A deformational and configurational framework for geometrically nonlinear continuum thermomechanics coupled to diffusion. International Journal of Non-Linear Mechanics, doi:10.1016/j.ijnonlinmec.2011.05.009 (in press)Google Scholar
  22. 22.
    Thomas, N.L., Windle, A.H.: A deformation model for case ii diffusion. Polymer 21(6), 613–619 (1980)CrossRefGoogle Scholar
  23. 23.
    Thomas, N.L., Windle, A.H.: Diffusion mechanics of the system pmma-methanol. Polymer 22(5), 627–639 (1981)CrossRefGoogle Scholar
  24. 24.
    Thomas, N.L., Windle, A.H.: A theory of case II diffusion. Polymer 23(4), 529–542 (1982)CrossRefGoogle Scholar
  25. 25.
    Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, 3rd edn. Springer, New York (2004)CrossRefGoogle Scholar
  26. 26.
    Vesely, D.: Diffusion of liquids in polymers. International Materials Reviews 53(5), 299–315 (2008)CrossRefGoogle Scholar
  27. 27.
    Vijalapura, P.K., Govindjee, S.: Numerical simulation of coupled-stress case II diffusion in one dimension. Journal of Polymer Science: Part B: Polymer Physics 41, 2091–2108 (2003)CrossRefGoogle Scholar
  28. 28.
    Vijalapura, P.K., Govindjee, S.: An adaptive hybrid time-stepping scheme for highly non-linear strongly coupled problems. International Journal for Numerical Methods In Engineering 64, 819–848 (2005)CrossRefzbMATHGoogle Scholar
  29. 29.
    Wu, J.C., Peppas, N.A.: Modeling of penetrant diffusion in glassy polymers with an integral sorption Deborah number. Journal of Polymer Science: Part B: Polymer Physics 31, 1503–1518 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andrew T. McBride
    • 1
  • Swantje Bargmann
    • 2
  • Paul Steinmann
    • 1
  1. 1.Applied MechanicsUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Institute of MechanicsTU Dortmund UniversityDortmundGermany

Personalised recommendations