Advertisement

Elastic VM for Cloud Resources Provisioning Optimization

  • Wesam Dawoud
  • Ibrahim Takouna
  • Christoph Meinel
Part of the Communications in Computer and Information Science book series (CCIS, volume 190)

Abstract

Rapid growth of E-Business and frequent changes in websites contents as well as customers’ interest make it difficult to predict workload surge. To maintain a good quality of service (QoS), system administrators must provision enough resources to cope with workload fluctuations considering that resources over-provisioning reduces business profits while under-provisioning degrades performance. In this paper, we present elastic system architecture for dynamic resources management and applications optimization in virtualized environment. In our architecture, we have implemented three controllers for CPU, Memory, and Application. These controllers run in parallel to guarantee efficient resources allocation and optimize application performance on co-hosted VMs dynamically. We evaluated our architecture with extensive experiments and several setups; the results show that considering online optimization of application, with dynamic CPU and Memory allocation, can reduce service level objectives (SLOs) violation and maintain application performance…

Keywords

virtualization consolidation elasticity application performance automatic provisioning optimization cloud computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apache: The Apache Software Foundation, http://www.apache.org/
  2. 2.
    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization, vol. 37, p. 164. ACM Press, New York (2003)Google Scholar
  3. 3.
    Chess, Y.D., Hellerstein, J.L., Parekh, S., Bigus, J.P.: Managing Web server performance with AutoTune agents. IBM Systems Journal 42(1), 136–149 (2003)CrossRefGoogle Scholar
  4. 4.
    Gandhi, N., Tilbury, D.M., Diao, Y., Hellerstein, J., Parekh, S.: MIMO control of an Apache web server: modeling and controller design. In: Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), pp. 4922–4927. American Automatic Control Council (2002)Google Scholar
  5. 5.
    Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Computing Systems. John Wiley & Sons, Chichester (2004)CrossRefGoogle Scholar
  6. 6.
    Heo, J., Zhu, X., Padala, P., Wang, Z.: Memory Overbooking and Dynamic Control of Xen Virtual Machines in Consolidated Environments. In: Proceedings of IFIPIEEE Symposium on Integrated Management IM 2009 Miniconference, pp. 630–637. IEEE, Los Alamitos (2009)Google Scholar
  7. 7.
    Khanna, G., Beaty, K., Kar, G., Kochut, A.: Application Performance Management in Virtualized Server Environments. In: 2006 IEEE/IFIP Network Operations and Management Symposium NOMS 2006, pp. 373–381. IEEE, Los Alamitos (2006)CrossRefGoogle Scholar
  8. 8.
    Liu, X., Sha, L., Diao, Y., Froehlich, S., Hellerstein, J.L., Parekh, S.: Online Response Time Optimization of Apache Web Server (2003)Google Scholar
  9. 9.
    Liu, Z.: Traffic model and performance evaluation of Web servers. Performance Evaluation 46(2-3), 77–100 (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Mosberger, D., Jin, T.: httperf - A Tool for Measuring Web Server Performance. In: First Workshop on Internet Server Performance, pp. 59–67 (1998)Google Scholar
  11. 11.
    Oberheide, J., Cooke, E., Jahanian, F.: Empirical exploitation of live virtual machine migration. In: Proc. of BlackHat DC Convention (2008)Google Scholar
  12. 12.
    Bovet, D.P., Cesati, M.: Understanding the Linux Kernel, 3rd edn. O’Reilly Media, Sebastopol (2005)Google Scholar
  13. 13.
    Padala, P., Hou, K.-Y., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A.: Automated control of multiple virtualized resources. In: European Conference on Computer Systems, pp. 13–26 (2009)Google Scholar
  14. 14.
    Midgley, J.T.J.: Autobench (2008), http://www.xenoclast.org/autobench/
  15. 15.
    Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., Wood, T.: Agile dynamic provisioning of multi-tier Internet applications. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 3(1) (2008)Google Scholar
  16. 16.
  17. 17.
    Wang, Z., Zhu, X., Singhal, S., Packard, H.: Utilization and slo-based control for dynamic sizing of resource partitions (2005)Google Scholar
  18. 18.
    Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Abstract Black-box and Gray-box Strategies for Virtual Machine Migration (2007)Google Scholar
  19. 19.
    Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A., Padala, P., Shin, K.: What does control theory bring to systems research?. SIGOPS Oper. Syst. Rev. 43(1), 62–69 (2009)CrossRefGoogle Scholar
  20. 20.
    Zhu, X., Wang, Z., Singhal, S.: Utility-Driven Workload Management using Nested Control Design. In: 2006 American Control Conference, pp. 6033–6038 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Wesam Dawoud
    • 1
  • Ibrahim Takouna
    • 1
  • Christoph Meinel
    • 1
  1. 1.Hasso Plattner InstitutePotsdam UniversityPotsdamGermany

Personalised recommendations