Finding Paths with Minimum Shared Edges

  • Masoud T. Omran
  • Jörg-Rüdiger Sack
  • Hamid Zarrabi-Zadeh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6842)


Motivated by a security problem in geographic information systems, we study the following graph theoretical problem: given a graph G, two special nodes s and t in G, and a number k, find k paths from s to t in G so as to minimize the number of edges shared among the paths. This is a generalization of the well-known disjoint paths problem. While disjoint paths can be computed efficiently, we show that finding paths with minimum shared edges is NP-hard. Moreover, we show that it is even hard to approximate the minimum number of shared edges to within a factor of \(2^{\log^{1-\varepsilon }n}\), for any constant ε > 0. On the positive side, we show that there exists a k-approximation algorithm for the problem, using an adaption of a network flow algorithm. We design some heuristics to improve the quality of the output, and provide empirical results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja, R.K., Goldberg, A.V., Orlin, J.B., Tarjan, R.E.: Finding minimum-cost flows by double scaling. Mathematical Programming 53(1), 243–266 (1992)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bader, D.A., Madduri, K.: Design and implementation of the HPCS graph analysis benchmark on symmetric multiprocessors. In: Bader, D.A., Parashar, M., Sridhar, V., Prasanna, V.K. (eds.) HIPC 2005. LNCS, vol. 3769, pp. 465–476. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Castanon, D.A.: Efficient algorithms for finding the k best paths through a trellis. IEEE Trans. Aerospace and Electronic Systems 26(2), 405–410 (1990)CrossRefGoogle Scholar
  4. 4.
    Charikar, M., Hajiaghayi, M., Karloff, H.: Improved approximation algorithms for label cover problems. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 23–34. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Even, G., Kortsarz, G., Slany, W.: On network design problems: fixed cost flows and the covering steiner problem. ACM Trans. Algorithms 1(1), 74–101 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Garey, M., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman, New York (1979)MATHGoogle Scholar
  7. 7.
    Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45(5), 783–797 (1998)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kobayashi, Y., Sommer, C.: On shortest disjoint paths in planar graphs. Discrete Optimization 7(4), 234–245 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Krumke, S.O., Noltemeier, H., Schwarz, S., Wirth, H.-C., Ravi, R.: Flow improvement and network flows with fixed costs. In: Proc. Internat. Conf. Oper. Res., OR 1998, pp. 158–167 (1998)Google Scholar
  10. 10.
    Lee, S.-W., Wu, C.-S.: A k-best paths algorithm for highly reliable communication networks. IEICE Trans. Commun. E82-B(4), 586–590 (1999)Google Scholar
  11. 11.
    Nikolopoulos, S.D., Pitsillides, A., Tipper, D.: Addressing network survivability issues by finding the k-best paths through a trellis graph. In: Proc. 16th IEEE Internat. Conf. Comput. Commun., pp. 370–377 (1997)Google Scholar
  12. 12.
    Suurballe, J.W., Tarjan, R.E.: A quick method for finding shortest pairs of disjoint paths. Networks 14(2), 325–336 (1984)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Zheng, S.Q., Yang, B., Yang, M., Wang, J.: Finding minimum-cost paths with minimum sharability. In: Proc. 26th IEEE Internat. Conf. Comput. Commun., pp. 1532–1540 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Masoud T. Omran
    • 1
  • Jörg-Rüdiger Sack
    • 1
  • Hamid Zarrabi-Zadeh
    • 1
    • 2
  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada
  2. 2.Department of Computer EngineeringSharif University of TechnologyTehranIran

Personalised recommendations