Scheduling Jobs on Heterogeneous Platforms

  • Marin Bougeret
  • Pierre Francois Dutot
  • Klaus Jansen
  • Christina Robenek
  • Denis Trystram
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6842)


In the context of grid scheduling we consider a scheduling scenario, where parallel jobs have to be scheduled non-preemptively on heterogeneous computational platforms of processors. The speed of the processors may differ among the platforms and the jobs are submitted simultaneously or over time and cannot run across multiple platforms. We focus on the target of minimizing the total makespan, i.e. the global latest finishing time of a job. In this paper we present an AFPTAS for the problem without release times and show how to generalize our result to malleable jobs and jobs with release times.


Release Time General Assignment Problem Heterogeneous Platform Strip Packing Unique Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bougeret, M., Dutot, P.F., Jansen, K., Otte, C., Trystram, D.: Approximation algorithms for multiple strip packing. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 37–48. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Bougeret, M., Dutot, P.F., Jansen, K., Otte, C., Trystram, D.: A low cost 5/2 approximation for scheduling rigid jobs on multiple organizations. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP Advances in Information and Communication Technology, vol. 323, pp. 316–327. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Bougeret, M., Dutot, P.F., Jansen, K., Otte, C., Trystram, D.: A fast 5/2-approximation algorithm for hierarchical scheduling. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6271, pp. 157–167. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Du, J., Leung, J.Y.-T.: Complexity of scheduling parallel task systems. SIAM Journal on Discrete Mathematics 2(4), 473–487 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hall, L.A., Shmoys, D.B.: Approximation Schemes for Constrained Scheduling Problems. In: 30th Annual Symposium on Foundations of Computer Science (FOCS 1989), pp. 134–139 (1989)Google Scholar
  6. 6.
    Harren, R., Jansen, K., Prädel, L., van Stee, R.: A 5/3 + ε approximation for strip packing. In: The 12th Symposium on Algorithms and Data Structures, WADS 2011 (to appear, 2011)Google Scholar
  7. 7.
    Jansen, K.: Scheduling malleable parallel tasks: An asymptotic fully polynomial time approximation scheme. Algorithmica 39(1), 59–81 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jansen, K.: Approximation algorithms for min-max and max-min resource sharing problems and applications. In: Bampis, E., Jansen, K., Kenyon, C. (eds.) Efficient Approximation and Online Algorithms. LNCS, vol. 3484, pp. 156–202. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Jansen, K., Porkolab, L.: Linear-time approximation schemes for scheduling malleable parallel tasks. Algorithmica 32(3), 507–520 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jansen, K., Solis-Oba, R.: Rectangle packing with one-dimensional resource augmentation. Discrete Optimization 6(3), 310–323 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jansen, K., Thöle, R.: Approximation algorithms for scheduling parallel jobs. SIAM Journal on Computing 39(8), 3571–3615 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Coffman Jr., E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on Computing 9(4), 808–826 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Garey, M.R., Graham, R.L.: Bounds for Multiprocessor Scheduling with Resource Constraints. SIAM Journal on Computing 4(2), 187–200 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kenyon, C., Rémila, E.: A near optimal solution to a two-dimensional cutting stock problem. Mathematics of Operations Research 25, 645–656 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Khachiyan, L.G., Grigoriadis, M.D., Porkolab, L., Villavicencio, J.: Approximate max-min resource sharing for structured concave optimization. SIAM Journal on Optimization 11, 1081–1091 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lawler, E.L.: Fast approximation algorithms for knapsack problems. Mathematics of Operation Research 4(4), 339–356 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling unrelated parallel machines. Mathematical Programming 46, 259–271 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mounié, G., Rapine, C., Trystram, D.: Efficient approximation algorithms for scheduling malleable tasks. In: ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 23–32 (1999)Google Scholar
  19. 19.
    Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation algorithms for fractional packing and covering problems. Mathematics of Operations Research 20, 257–301 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Schiermeyer, I.: Reverse-fit: A 2-optimal algorithm for packing rectangles. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 290–299. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  21. 21.
    Schwiegelshohn, U., Tchernykh, A., Yahyapour, R.: Online scheduling in grids. In: IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 1–10 (2008)Google Scholar
  22. 22.
    Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM Journal on Computing 26(2), 401–409 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tchernykh, A., Ramírez, J., Avetisyan, A., Kuzjurin, N., Grushin, D., Zhuk, S.: Two level job-scheduling strategies for a computational grid. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 774–781. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Ye, D., Han, X., Zhang, G.: On-line multiple-strip packing. In: Du, D.-Z., Hu, X., Pardalos, P.M. (eds.) COCOA 2009. LNCS, vol. 5573, pp. 155–165. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Zhuk, S.N.: Approximate algorithms to pack rectangles into several strips. Discrete Mathematics and Applications 16(1), 73–85 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marin Bougeret
    • 1
  • Pierre Francois Dutot
    • 1
  • Klaus Jansen
    • 2
  • Christina Robenek
    • 2
  • Denis Trystram
    • 1
  1. 1.LIGGrenoble UniversityFrance
  2. 2.Department of Computer ScienceChristian-Albrechts-University KielKielGermany

Personalised recommendations