Cograph Editing: Complexity and Parameterized Algorithms

  • Yunlong Liu
  • Jianxin Wang
  • Jiong Guo
  • Jianer Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6842)


Cograph Editing is to find for a given graph G = (V,E) a set of at most k edge additions and deletions that transform G into a cograph. The computational complexity of this problem was open in the past. In this paper, we show that this problem is NP-hard, and present a parameterized algorithm based on a refined search tree technique with a running time of O(4.612 k  + |V|4.5)), which improves the trivial algorithm of running time O(6 k  + |V|4.5).


Parameterized Algorithm Input Graph Edge Addition Vertex Pair Information Processing Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asdre, K., Nikolopoulos, S.D., Papadopoulos, C.: An optimal parallel solution for the path cover problem on P 4-sparse graphs. Journal of Parallel and Distributed Computing 67(1), 63–76 (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification problems. Discrete Applied Mathematics 154(13), 1824–1844 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58(4), 171–196 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 459–468. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Corneil, G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM Journal on Computing 14(4), 926–934 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    El-Mallah, E.S., Colbourn, C.J.: The complexity of some edge deletion problems. IEEE Transactions on Circuits and Systems 35(3), 354–362 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Exact algorithms for clique generation. Theory of Computing Systems 38(4), 373–392 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Guillemot, S., Paul, C., Perez, A.: On the (Non-)existence of polynomial kernels for pl-free edge modification problems. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 147–157. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Guo, J., Hüffner, F., Komusiewicz, C., Zhang, Y.: Improved algorithms for bicluster editing. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 445–456. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Hoàng, C.T.: Perfect graphs. PhD Thesis, School of Computer Science. McGill University, Montreal (1985)Google Scholar
  12. 12.
    Jamison, B., Olariu, S.: Recognizing P 4-sparse graphs in linear time. SIAM Journal on Computing 21(2), 381–406 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mancini, F.: Graph Modification Problems Related to Graph Classes. PhD Thesis, University of Bergen (2008)Google Scholar
  14. 14.
    McConnell, R.M., Spinrad, J.: Modular decomposition and transitive orientation. Discrete Mathematics 201(1-3), 189–241 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nastos, J., Gao, Y.: A novel branching strategy for parameterized graph modification problems. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part II. LNCS, vol. 6509, pp. 332–346. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Discrete Applied Mathematics 113(1), 109–128 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter tractable algorithms. Information Processing Letters 73, 125–129 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Protti, F., Silva, M.D., Szwarcfiter, J.L.: Applying Modular Decomposition to Parameterized Cluster Editing Problems. Theory of Computing Systems 44, 91–104 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Seinsche, D.: On a property of the class of n-colorable graphs. Journal of Combinatorial Theory, Series B 16, 191–193 (1974)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yunlong Liu
    • 1
  • Jianxin Wang
    • 2
  • Jiong Guo
    • 3
  • Jianer Chen
    • 2
    • 4
  1. 1.School of Mathematics and Computer ScienceHunan Normal UniversityChangshaP.R. China
  2. 2.School of Information Science and EngineeringCentral South UniversityChangshaP.R. China
  3. 3.Universität des Saarlandes, Campus E 1.7SaarbrückenGermany
  4. 4.Department of Computer Science and EngineeringTexas A&M University, College StationUSA

Personalised recommendations