Proof Assistant Decision Procedures for Formalizing Origami

  • Cezary Kaliszyk
  • Tetsuo Ida
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6824)


Origami constructions have interesting properties that are not covered by standard euclidean geometry. Such properties have been shown with the help of computer algebra systems. Proofs performed with computer algebra systems can be accompanied by proof documents, still they lack complete mathematical rigorousity, like the one provided by proof assistant checked proofs. Transforming such proofs to machine checkable proof scripts poses a number of challenges.

In this paper we describe issues that arise when proving properties of origami constructions using proof assistant decision procedures. We examine the strength of Gröbner Bases implementations comparing proof assistants with each other and with the implementations provided in computer algebra systems. We show ad-hoc decision procedures that can be used to optimize the proofs. We show how maximum equilateral triangle inscribed in a square construction can be formalized. We show how a equation system solving mechanism can be embedded in a CAS decision procedure of a proof assistant.


Decision Procedure Equilateral Triangle Computer Algebra Computer Algebra System Linear Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, A., Dunstan, M., Gottliebsen, H., Kelsey, T., Martin, U., Owre, S.: Computer algebra meets automated theorem proving: Integrating Maple and PVS. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 27–42. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Aslaksen, H.: Multiple-valued complex functions and computer algebra. SIGSAM Bulletin (ACM Special Interest Group on Symbolic and Algebraic Manipulation) 30(2), 12–20 (1996)zbMATHGoogle Scholar
  3. 3.
    Barras, B., Boutin, S., Cornes, C., Courant, J., Coscoy, Y., Delahaye, D., de Rauglaudre, D., Filliâtre, J.C., Giménez, E., Herbelin, H., et al.: The Coq Proof Assistant Reference Manual Version 8.3. LogiCal project (2010),
  4. 4.
    Cohen, C., Mahboubi, A.: A formal quantifier elimination for algebraically closed fields. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 189–203. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Ghourabi, F., Ida, T., Kasem, A.: Proof documents for automated origami theorem proving. Submitted to ADG 2011 post-proceedings (2011)Google Scholar
  6. 6.
    Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  7. 7.
    Huzita, H.: Axiomatic development of origami geometry. In: Huzita, H. (ed.) Proceedings of the First International Meeting of Origami Science and Technology, pp. 143–158 (1989)Google Scholar
  8. 8.
    Huzita, H.: The trisection of a given angle solved by the geometry of origami. In: Huzita, H. (ed.) Proceedings of the First International Meeting of Origami Science and Technology, pp. 195–214 (1989)Google Scholar
  9. 9.
    Ida, T., Ghourabi, F., Kasem, A., Kaliszyk, C.: Towards theory of origami fold. Submitted to ISSAC (2011)Google Scholar
  10. 10.
    Janicic, P.: Geometry constructions language. J. Autom. Reasoning 44(1-2), 3–24 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Justin, J.: Résolution par le pliage de l’équation du troisième degré et applications géométriques. In: Huzita, H. (ed.) Proceedings of the First International Meeting of Origami Science and Technology, pp. 251–261 (1989)Google Scholar
  12. 12.
    Kaliszyk, C.: Prototype computer algebra system in HOL Light,
  13. 13.
    Kaliszyk, C., Wiedijk, F.: Certified computer algebra on top of an interactive theorem prover. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 94–105. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Kasem, A., Ida, T.: Computational origami environment on the Web. Frontiers of Computer Science in China 2(1), 39–54 (2008)CrossRefGoogle Scholar
  15. 15.
    Kasem, A., Ida, T., Takahashi, H., Marin, M., Ghourabi, F.: E-origami system Eos. In: Proceedings of the Annual Symposium of Japan Society for Software Science and Technology, JSSST, Tokyo, Japan (September 2006)Google Scholar
  16. 16.
    McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 295–314. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Medina-Bulo, I., Palomo-Lozano, F., Ruiz-Reina, J.-L.: A verified Common Lisp implementation of Buchberger’s algorithm in ACL2. J. Symb. Comput. 45(1), 96–123 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Narboux, J.: A graphical user interface for formal proofs in geometry. J. Autom. Reasoning 39(2), 161–180 (2007)CrossRefzbMATHGoogle Scholar
  19. 19.
    Nipkow, T., Paulson, L.C., Wenzel, M.T. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  20. 20.
    Pottier, L.: Connecting Gröbner bases programs with Coq to do proofs in algebra, geometry and arithmetics. In: Rudnicki, P., Sutcliffe, G., Konev, B., Schmidt, R.A., Schulz, S. (eds.) LPAR Workshops. CEUR Workshop Proceedings, vol. 418, (2008)Google Scholar
  21. 21.
    Critique of the Mathematical Abilities of CA Systems. In: Wester, M. (ed.) Contents of Computer Algebra Systems: A Practical Guide, John Wiley & Sons, Chichester (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Cezary Kaliszyk
    • 1
  • Tetsuo Ida
    • 1
  1. 1.Symbolic Computation Research GroupUniversity of TsukubaJapan

Personalised recommendations