Advertisement

Simplified Derandomization of BPP Using a Hitting Set Generator

  • Oded Goldreich
  • Salil Vadhan
  • Avi Wigderson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6650)

Abstract

A hitting-set generator is a deterministic algorithm that generates a set of strings such that this set intersects every dense set that is recognizable by a small circuit. A polynomial time hitting-set generator readily implies \(\mathcal{RP}=\mathcal{P}\), but it is not apparent what this implies for \(\mathcal{BPP}\). Nevertheless, Andreev et al. (ICALP’96, and JACM 1998) showed that a polynomial-time hitting-set generator implies the seemingly stronger conclusion \(\mathcal{BPP=P}\). We simplify and improve their (and later) constructions.

Keywords

Derandomization RP BPP one-sided error versus two-sided error 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.: Two theorems on random polynomial-time. In: 19th FOCS, pp. 75–83 (1978)Google Scholar
  2. 2.
    Andreev, A.E., Clementi, A.E.F., Rolim, J.D.P.: A new general derandomization method. Journal of the Association for Computing Machinery (J. of ACM) 45(1), 179–213 (1998); Hitting Sets Derandomize BPP. In: XXIII International Colloquium on Algorithms, Logic and Programming, ICALP 1996 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Andreev, A.E., Clementi, A.E.F., Rolim, J.D.P., Trevisan, L.: Weak Random Sources, Hitting Sets, and BPP Simulations. To appear in SICOMP (1997); Preliminary version in 38th FOCS, pp. 264–272 (1997)Google Scholar
  4. 4.
    Buhrman, H., Fortnow, L.: One-sided versus two-sided randomness. In: Proceedings of the 16th Symposium on Theoretical Aspects of Computer Science. LNCS, Springer, Berlin (1999)Google Scholar
  5. 5.
    Even, S., Selman, A.L., Yacobi, Y.: The Complexity of Promise Problems with Applications to Public-Key Cryptography. Inform. and Control 61, 159–173 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Goldreich, O., Zuckerman, D.: Another proof that BPP ⊆ PH (and more). In: Goldreich, O., et al.: Studies in Complexity and Cryptography. LNCS, vol. 6650, pp. 40–53. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Goldreich, O., Wigderson, A.: Improved derandomization of BPP using a hitting set generator. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 131–137. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Impagliazzo, R., Wigderson, A.: P=BPP unless E has Subexponential Circuits: Derandomizing the XOR Lemma. In: 29th STOC, pp. 220–229 (1997)Google Scholar
  9. 9.
    Lautemann, C.: BPP and the Polynomial Hierarchy. Information Processing Letters 17, 215–217 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Sipser, M.: A complexity-theoretic approach to randomness. In: 15th STOC, pp. 330–335 (1983)Google Scholar
  11. 11.
    Zuckerman, D.: Simulating BPP Using a General Weak Random Source. Algorithmica 16, 367–391 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Oded Goldreich
  • Salil Vadhan
  • Avi Wigderson

There are no affiliations available

Personalised recommendations