Advertisement

On the Circuit Complexity of Perfect Hashing

  • Oded Goldreich
  • Avi Wigderson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6650)

Abstract

We consider the size of circuits that perfectly hash an arbitrary subset S ⊂ {0,1} n of cardinality 2 k into {0,1} m . We observe that, in general, the size of such circuits is exponential in 2k − m, and provide a matching upper bound.

Keywords

Perfect Hashing Circuit Complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Babai, L., Itai, A.: A fast and Simple Randomized Algorithm for the Maximal Independent Set Problem. J. of Algorithms 7, 567–583 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Carter, L., Wegman, M.: Universal Classes of Hash Functions. J. Computer and System Sciences 18, 143–154 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fredman, M., Komlós, J.: On the Size of Separating Systems and Perfect Hash Functions. SIAM J. Algebraic and Discrete Methods 5, 61–68 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fredman, M., Komlós, J., Szemerédi, E.: Storing a Sparse Table with O(1) Worst Case Access Time. Journal of the ACM 31, 538–544 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Korner, J., Marton, K.: New Bounds for Perfect Hashing via Information Theory. Europ. J. Combinatorics 9, 523–530 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Mehlhorn, K.: Data Structures and Algorithms. EATCS Monographs on Theoretical Computer Science, vol. 1 (1984)Google Scholar
  7. 7.
    Nilli, A.: Perfect Hashing and Probability. Combinatorics, Probability and Computing 3, 407–409 (1994)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Oded Goldreich
  • Avi Wigderson

There are no affiliations available

Personalised recommendations