Advertisement

Integration of an LP Solver into Interval Constraint Propagation

  • Ernst Althaus
  • Bernd Becker
  • Daniel Dumitriu
  • Stefan Kupferschmid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6831)

Abstract

This paper describes the integration of an LP solver into iSAT, a Satisfiability Modulo Theories solver that can solve Boolean combinations of linear and nonlinear constraints. iSAT is a tight integration of the well-known DPLL algorithm and interval constraint propagation allowing it to reason about linear and nonlinear constraints. As interval arithmetic is known to be less efficient on solving linear programs, we will demonstrate how the integration of an LP solver can improve the overall solving performance of iSAT.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Althaus, E., Dumitriu, D.: Fast and accurate bounds on linear programs. In: Proc. 8th International Symposium on Experimental Algorithms (SEA 2009). LNCS, vol. 5526, pp. 40–50. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Benhamou, F., Granvilliers, L.: Continuous and Interval Constraints. In: Handbook of Constraint Programming. Foundations of Artificial Intelligence, ch.16, pp. 571–603 (2006)Google Scholar
  3. 3.
    Besson, F.: On using an inexact floating-point LP solver for deciding linear arithmetic in an SMT solver. In: 8th International Workshop on Satisfiability Modulo Theories (2010)Google Scholar
  4. 4.
    Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The MathSAT 4 SMT Solver. In: Gupta, A., Malik, S. (eds.) Computer Aided Verification, Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The openSMT solver. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dhiflaoui, M., Funke, S., Kwappik, C., Mehlhorn, K., Seel, M., Schömer, E., Schulte, R., Weber, D.: Certifying and repairing solutions to large LPs. How good are LP-solvers? In: Symposium of Discrete Algorithms (SODA), pp. 255–256 (2003)Google Scholar
  8. 8.
    Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. JSAT Special Issue on Constraint Programming and SAT 1, 209–236 (2007)zbMATHGoogle Scholar
  10. 10.
    Gao, S., Ganai, M., Ivancic, F., Gupta, A., Sankaranarayanan, S., Clarke, E.: Integrating ICP and LRA solvers for deciding nonlinear real arithmetic. In: FMCAD (2010)Google Scholar
  11. 11.
    Gurobi Optimization: Gurobi Optimizer, http://www.gurobi.com/
  12. 12.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? In: Proc. of the 27th Annual Symposium on Theory of Computing, ACM Press, New York (1995)Google Scholar
  13. 13.
  14. 14.
    Koch, T.: The final NETLIB-LP results. Oper. Res. Lett. 32(2), 138–142 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer linear programming. Math. Program. 99(2), 283–296 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pigorsch, F., Scholl, C.: Using implications for optimizing state set representations of linear hybrid systems. In: GI/ITG/GMM Workshop MBMV (2009)Google Scholar
  17. 17.
    SMT-LIB: The Satisfiability Modulo Theories Library, http://goedel.cs.uiowa.edu/smtlib/
  18. 18.
    SoPlex: The Sequential object-oriented simplex, http://soplex.zib.de/
  19. 19.
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry. Univ. of California Press, Berkeley (1951)zbMATHGoogle Scholar
  20. 20.
    Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in Constructive Mathematics and Mathematical Logic, Part 2, pp. 115–125 (1970)Google Scholar
  21. 21.
    Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. Ph.D. thesis, Technische Universität Berlin (1996), http://www.zib.de/Publications/abstracts/TR-96-09/

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ernst Althaus
    • 1
    • 2
  • Bernd Becker
    • 3
  • Daniel Dumitriu
    • 1
  • Stefan Kupferschmid
    • 3
  1. 1.Johannes Gutenberg UniversityMainzGermany
  2. 2.Max Planck Institute for Computer ScienceSaarbrückenGermany
  3. 3.Albert Ludwig UniversityFreiburgGermany

Personalised recommendations