Algorithmic Aspects of Heterogeneous Biological Networks Comparison

  • Guillaume Blin
  • Guillaume Fertin
  • Hafedh Mohamed-Babou
  • Irena Rusu
  • Florian Sikora
  • Stéphane Vialette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6831)


Biological networks are commonly used to model molecular activity within the cell. Recent experimental studies have shown that the detection of conserved subnetworks across several networks, coming from different organisms, may allow the discovery of disease pathways and prediction of protein functions. There already exist automatic methods that allow to search for conserved subnetworks using networks alignment; unfortunately, these methods are limited to networks of same type, thus having the same graph representation. Towards overcoming this limitation, a unified framework for pairwise comparison and analysis of networks with different graph representations (in particular, a directed acyclic graph D and an undirected graph G over the same set of vertices) is presented in [4]. We consider here a related problem called k -DAGCC: given a directed graph D and an undirected graph G on the same set V of vertices, and an integer k, does there exist sets of vertices V 1, V 2, …V k, k′ ≤ k such that, for each 1 ≤ i ≤ k′, (i) D[V i ] is a DAG and (ii) G[V i ] is connected ? Two variants of k -DAGCC are of interest: (a) the V i s must form a partition of V, or (b) the V i s must form a cover of V. We study the computational complexity of both variants of k -DAGCC and, depending on the constraints imposed on the input, provide several polynomial-time algorithms, hardness and inapproximability results.


Directed Graph Metabolic Network Directed Acyclic Graph Undirected Graph Protein Interaction Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boyer, F., Morgat, A., Labarre, L., Pothier, J., Viari, A.: Syntons, metabolons and interactons: an exact graph-theoretical approach for exploring neighbourhood between genomic and functional data. Bioinformatics 21(23), 4209–4215 (2005)CrossRefGoogle Scholar
  2. 2.
    Deniélou, Y.-P., Boyer, F., Viari, A., Sagot, M.-F.: Multiple alignment of biological networks: A flexible approach. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 263–273. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Durek, P., Walther, D.: The integrated analysis of metabolic and protein interaction networks reveals novel molecular organizing principles. BMC Syst. Biol. 2(1) (2008)Google Scholar
  4. 4.
    Fertin, G., Babou, H.M., Rusu, I.: A pattern-guided approach to compare heterogeneous networks. Submitted (2011),
  5. 5.
    Flannick, J., Novak, A., Srinivasan, B.S., McAdams, H.H., Batzoglou, S.: Graemlin: General and robust alignment of multiple large interaction networks. Genome Res. 16(9), 1169–1181 (2006)CrossRefGoogle Scholar
  6. 6.
    Gamzu, I., Segev, D., Sharan, R.: Improved orientations of physical networks. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 215–225. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Garey, M., Johnson, D.: Computers and Intractability: A guide to the theory of NP-completeness. W.H. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  8. 8.
    Gitter, A., Klein-Seetharaman, J., Gupta, A., Bar-Joseph, Z.: Discovering pathways by orienting edges in protein interaction networks. Nucleic Acids Research 39(4), e22 (2011)CrossRefGoogle Scholar
  9. 9.
    Huthmacher, C., Gille, C., Holzhütter, H.: A computational analysis of protein interactions in metabolic networks reveals novel enzyme pairs potentially involved in metabolic channeling. J. Theor. Biol. 252(3), 456–464 (2008)CrossRefGoogle Scholar
  10. 10.
    Kelley, B.P., Sharan, R., Karp, R.M., et al.: Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc. Natl. Acad. Sci. USA 100(20), 11394–11399 (2003)CrossRefGoogle Scholar
  11. 11.
    Kelley, B.P., Yuan, B., Lewitter, F., Sharan, R., Stockwell, B.R., Ideker, T.: Pathblast: a tool for alignment of protein interaction networks. Nucleic Acids Res, 32(Web Server issue) (2004)Google Scholar
  12. 12.
    Kuchaiev, O., Milenkovic, T., Memisevic, V., Hayes, W., Przulj, N.: Topological network alignment uncovers biological function and phylogeny. J. R. Soc. Interface 7(50), 1341–1354 (2010)CrossRefGoogle Scholar
  13. 13.
    Lee, I., Date, S.V., Adai, A.T., Marcotte, E.M.: A probabilistic functional network of yeast genes. Science 306, 1555–1558 (2004)CrossRefGoogle Scholar
  14. 14.
    Medvedovsky, A., Bafna, V., Zwick, U., Sharan, R.: An algorithm for orienting graphs based on cause-effect pairs and its applications to orienting protein networks. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 222–232. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Narayanan, M., Karp, R.M.: Comparing protein interaction networks via a graph match-and-split algorithm. J of Comput. Biol. 14(7), 892–907 (2007)CrossRefGoogle Scholar
  16. 16.
    Pal, C., Hurst, L.: Evidence against the selfish operon theory. Trends Genet. 20, 232–234 (2004)CrossRefGoogle Scholar
  17. 17.
    Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E., Ziv-Ukelson, M.: Alignment of metabolic pathways. Bioinformatics 21(16), 3401–3408 (2005)CrossRefGoogle Scholar
  19. 19.
    Rison, S., Teichmann, S., Thornton, J.: Homology, pathway distance and chromosomal localisation of the small molecule metabolism enzymes in Escherichia coli. J. Mol. Biol. 318, 911–932 (2002)CrossRefGoogle Scholar
  20. 20.
    Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nature Biotechnol. 4(4), 427–433 (2006)CrossRefGoogle Scholar
  21. 21.
    Tian, W., Samatova, N.F.: Pairwise alignment of interaction networks by fast identification of maximal conserved patterns. In: Proc. 14th Pacific Symposium on Biocomputing (PSB), pp. 99–110 (2009)Google Scholar
  22. 22.
    Zheng, Y., Szustakowski, J., Fortnow, L., Roberts, R., Kasif, S.: Computational identification of operons in microbial genomes. Genome Res. 12, 1221–1230 (2002)CrossRefGoogle Scholar
  23. 23.
    Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory of Computing 3(1), 103–128 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Guillaume Blin
    • 1
  • Guillaume Fertin
    • 2
  • Hafedh Mohamed-Babou
    • 2
  • Irena Rusu
    • 2
  • Florian Sikora
    • 1
  • Stéphane Vialette
    • 1
  1. 1.LIGM - UMR CNRS 8049Université Paris-EstFrance
  2. 2.LINA - UMR CNRS 6241Université de NantesFrance

Personalised recommendations