Adaptation of Ontological Knowledge from Structured Textual Data

  • Tonio Wandmacher
  • Ekaterina Ovchinnikova
  • Uwe Mönnich
  • Jens Michaelis
  • Kai-Uwe Kühnberger

Abstract

This paper provides a general framework for the extraction and adaptation of ontological knowledge from new structured information. The cycle of this process is described starting with the extraction of semantic knowledge from syntactically given information, the transformation of this information into an appropriate format of description logic, and the dynamic update of a given ontology with this new information where certain types of potentially occurring inconsistencies are automatically resolved. The framework uses crucially certain tools for this incremental update. In addition to WordNet, the usage of FrameNet plays an important role, in order to provide a consistent basis for reasoning applications. The cycle of rewriting textual definitions into description logic axioms is prototypically implemented as well as the resolution of certain types of inconsistencies in the dynamic update of ontologies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agichtein, E., Gravano, L.: Snowball: Extracting relations from large plain-text collections. In: Proc. of the 5th ACM International Conference on Digital Libraries (ACM DL), pp. 85–94 (2000)Google Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The description logic handbook: theory, implementation, and applications. Cambridge University Press, New York (2003)MATHGoogle Scholar
  3. 3.
    Baader, F., Lutz, C., Milicic, M., Sattler, U., Wolter, F.: Integrating description logics and action formalisms: First results. In: Proceedings of the 2005 International Workshop on Description Logics (DL2005). CEUR-WS (2005)Google Scholar
  4. 4.
    Bejan, C., Harabagiu, S.: A Linguistic Resource for Discovering Event Structures and Resolving Event Coreference. In: Proc. of LREC 2008 (2008)Google Scholar
  5. 5.
    Bird, S., Liberman, M.: A formal framework for linguistic annotation. Speech Communication 33(1), 23–60 (2001)MATHCrossRefGoogle Scholar
  6. 6.
    Brachman, R.J., Schmolze, J.: An overview of the KL-ONE knowledge representation system. Cognitive Science 9(2), 171–216 (1985)CrossRefGoogle Scholar
  7. 7.
    Buitelaar, P., Olejnik, D., Hutanu, M., Schutz, A., Declerck, T., Sintek, M.: Towards ontology engineering based on linguistic analysis. In: Proc. of the Lexical Resources and Evaluation Conference, LREC (2004)Google Scholar
  8. 8.
    Buitelaar, P., Olejnik, D., Sintek, M.: A Protégé plugin for ontology extraction from text based on linguistic analysis. In: Proc. of the 1st European Semantic Web Symposium, ESWS (2004)Google Scholar
  9. 9.
    Cao, D.D., Croce, D., Pennacchiotti, M., Basili, R.: Combining word sense and usage for modeling frame semantics. In: Proc. of STEP 2008 (2008)Google Scholar
  10. 10.
    Caraballo, S.: Automatic construction of a hypernym-labeled noun hierarchy from text. In: Proc. of the 37th Annual Meeting of the Association for Computational Linguistics, pp. 120–126 (1999)Google Scholar
  11. 11.
    Cimiano, P., Staab, S.: Learning by googling. SIGKDD Explorations 6(2), 24–33 (2004)CrossRefGoogle Scholar
  12. 12.
    Cimiano, P., Staab, S.: Learning concept hierarchies from text with a guided agglomerative clustering algorithm. In: Proc. of the ICML Workshop on Learning and Extending Lexical Ontologies with Machine Learning Methods, Bonn, Germany (2005)Google Scholar
  13. 13.
    Cimiano, P., Völker, J.: Text2Onto - a framework for ontology learning and data-driven change discovery. In: Proc. of the 10th International Conference on Applications of Natural Language to Information Systems, NLDB (2005)Google Scholar
  14. 14.
    Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in description logics. In: Rosenbloom, P., Szolovits, P. (eds.) Proc. of the 10th Nat.Conf. on Artificial Intelligence (AAAI), pp. 754–761. AAAI Press, Menlo Park (1993)Google Scholar
  15. 15.
    Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of finite graphs. Information and Computation 85(1), 12–75 (1990)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by Latent Semantic Analysis. JASIS 41(6), 391–407 (1990)CrossRefGoogle Scholar
  17. 17.
    Erk, K., Pado, S.: A powerful and versatile xml format for representing role-semantic annotation. In: Proceedings of LREC 2004, Lisbon, Portugal (2004)Google Scholar
  18. 18.
    Erk, K., Pado, S.: Shalmaneser - a toolchain for shallow semantic parsing. In: Proc. of the Lexical Resources and Evaluation Conference, LREC (2006)Google Scholar
  19. 19.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)MATHGoogle Scholar
  20. 20.
    Faure, D., Nédellec, C.: ASIUM: Learning subcategorization frames and restrictions of selection. In: Proc. of the 10th Conference on Machine Learning, ECML (1998)Google Scholar
  21. 21.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)MATHGoogle Scholar
  22. 22.
    Guarino, N.: Formal ontology and information systems, pp. 3–15. IOS Press, Amsterdam (1998)Google Scholar
  23. 23.
    Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for handling inconsistency in changing ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 353–367. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proc. of the 14th Int. Conf. on Computational Linguistics, Nantes, France (1992)Google Scholar
  25. 25.
    Heymans, S., Vermeir, D.: A defeasible ontology language. In: Meersman, R., Tari, Z. (eds.) CoopIS 2002, DOA 2002, and ODBASE 2002. LNCS, vol. 2519, pp. 1033–1046. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Katrenko, S., Adriaans, P.: Learning patterns from dependency paths. In: Proceedings of the international workshop Ontologies in Text Technology, OTT, Osnabrück (2006)Google Scholar
  27. 27.
    Katz, Y., Parsia, B.: Towards a nonmonotonic extension to OWL. In: Proceedings of the Workshop OWL: Experiences and Directions (2005)Google Scholar
  28. 28.
    Kracht, M.: Modal logic foundations of markup structures in annotation systems. In: Witt, A., Metzing, D. (eds.) Linguistic Modeling ofInformation and Markup Languages. Contributions to Language Technology, Springer, Heidelberg (2009)Google Scholar
  29. 29.
    Lam, S.C., Pan, J.Z., Sleeman, D.H., Vasconcelos, W.W.: A fine-grained approach to resolving unsatisfiable ontologies. In: Web Intelligence, pp. 428–434 (2006)Google Scholar
  30. 30.
    Lin, D.: Dependency-based evaluation of MINIPAR. In: Proceedings of the Workshop on the Evaluation of Parsing Systems (1998)Google Scholar
  31. 31.
    Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent Systems 16(2), 72–79 (2001)CrossRefGoogle Scholar
  32. 32.
    Michaelis, J., Mönnich, U.: Towards a logical description of trees in annotation graphs. LDV Forum 22(2), 68–83 (2007)Google Scholar
  33. 33.
    Mihalcea, R., Csomai, A.: Senselearner: Word sense disambiguation for all words in unrestricted text. In: Proceedings of the 43nd ACL, Ann Arbor, MI (2005)Google Scholar
  34. 34.
    Navigli, R., Velardi, P.: Learning domain ontologies from document warehouses and dedicated websites. Computational Linguistics 30(2), 151–179 (2004)CrossRefGoogle Scholar
  35. 35.
    Oltramari, O., Prevot, L., Borgo, S.: Theoretical and practical aspects of interfacing ontologies and lexical resources. In: Proc. of OntoLex 2005 (2005)Google Scholar
  36. 36.
    Ovchinnikova, E., Kühnberger, K.U.: Adaptive ALE-TBox for extending terminological knowledge. In: 19th Australian Joint Conference on Artificial Intelligence, pp. 1111–1115 (2006)Google Scholar
  37. 37.
    Ovchinnikova, E., Kühnberger, K.U.: Automatic ontology extension: Resolving inconsistencies. GLDV-Journal for Computational Linguistics and Language Technology 22(2), 19–33 (2007)Google Scholar
  38. 38.
    Ovchinnikova, E., Wandmacher, T., Kühnberger, K.U.: Solving terminological inconsistency problems in ontology design. International Journal of Interoperability in Business Information Systems (IBIS) 2(1), 65–79 (2007)Google Scholar
  39. 39.
    Ovchinnikova, E., Vieu, L., Oltramari, A., Borgo, S., Alexandrov, T.: Data-driven and ontological analysis of framenet for natural language reasoning. In: Chair, N.C.C., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., Tapias, D. (eds.) Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC 2010). European Language Resources Association, ELRA (2010)Google Scholar
  40. 40.
    Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms 7(1), 309–322 (1986)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Ruppenhofer, J., Ellsworth, M., Petruck, M., Johnson, C., Scheffczyk, J.: FrameNet II: Extended Theory and Practice. International Computer Science Institute (2006)Google Scholar
  42. 42.
    Scheffczyk, J., Baker, C.F., Narayanan, S.: Ontology-based reasoning about lexical resources. In: Proc. of OntoLex 2006, Genoa, Italy (2006)Google Scholar
  43. 43.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: IJCAI, pp. 355–362 (2003)Google Scholar
  44. 44.
    Sowa, J.: Knowledge Representation. Logical, Philosophical, and Computational Foundations. Brooks/Cole, CA (2000)Google Scholar
  45. 45.
    Völker, J., Hitzler, P., Cimiano, P.: Acquisition of OWL DL axioms from lexical resources. In: Franconi, E., Kifer, M., May, W. (eds.) Proceedings of the European Semantic Web Conference, Innsbruck, Austria, pp. 670–685 (2007)Google Scholar
  46. 46.
    Völker, J., Haase, P., Hitzler, P.: Learning Expressive Ontologies. In: Ontology Learning and Population: Bridging the Gap between Text and Knowledge, vol. 167, pp. 45–69. IOS Press, Amsterdam (2008)Google Scholar
  47. 47.
    Wagner, A.: Enriching a lexical semantic net with selectional preferences by means of statistical corpus analysis. In: Proc. of the ECAI Workshop on Ontology Learning, Berlin, Germany (2000)Google Scholar
  48. 48.
    Wang, H., Horridge, M., Rector, A.L., Drummond, N., Seidenberg, J.: Debugging OWL-DL ontologies: A heuristic approach. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 745–757. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tonio Wandmacher
    • 3
  • Ekaterina Ovchinnikova
    • 3
  • Uwe Mönnich
    • 1
  • Jens Michaelis
    • 2
  • Kai-Uwe Kühnberger
    • 3
  1. 1.Seminar für SprachwissenschaftUniversität TübingenGermany
  2. 2.Fakultät für Linguistik und LiteraturwissenschaftUniversität BielefeldGermany
  3. 3.Institut für KognitionswissenschaftUniversität OsnabrückGermany

Personalised recommendations