The MOTS Workbench

  • Manfred Stede
  • Heike Bieler
Part of the Studies in Computational Intelligence book series (SCI, volume 370)


Standardization of processing frameworks for text documents has been an important issue for language technology for quite some time. This paper states the motivation for one particular framework, the MOTS workbench, which has been under development at Potsdam University since 2005 for purposes of research and teaching. We describe the overall architecture, the analysis modules that have been integrated into the workbench, and the user interface. Finally, after five years of experiences with MOTS, we provide a critical evaluation of the design decisions that were taken and draw conclusions for future development.


Manual Annotation Computational Linguistics Sentence Boundary Anaphora Resolution Input Document 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amtrup, J.: Ice - intarc communication environment user guide and reference manual version 1.4. Tech. rep. Universität Hamburg (1995)Google Scholar
  2. 2.
    Bieler, H., Dipper, S.: Measures for term and sentence relevances: an evaluation for german. In: Proceedings of the 6th LREC Conference, Marrakech (2008)Google Scholar
  3. 3.
    Bieler, H., Dipper, S., Stede, M.: Identifying formal and functional zones in film reviews. In: Proceedings of the Eighth SIGDIAL Workshop, Antwerp (2007)Google Scholar
  4. 4.
    Chiarcos, C., Dipper, S., Götze, M., Ritz, J., Stede, M.: A flexible framework for integrating annotations from different tools and tagsets. In: Proc. of the First International Conference on Global Interoperability for Language Resources, Hongkong (2008)Google Scholar
  5. 5.
    Cunningham, H.: Software architecture for language engineering. PhD thesis, University of Sheffield (2000)Google Scholar
  6. 6.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A framework and graphical development environment for robust NLP tools and applications. In: Proceedings of the 40th Anniversary Meeting of the Association for Computational Linguistics (2002)Google Scholar
  7. 7.
    Dipper, S.: XML-based stand-off representation and exploitation of multi-level linguistic annotation. In: Eckstein, R., Tolksdorf, R. (eds.) Proceedings of Berliner XML Tage, pp. 39–50 (2005)Google Scholar
  8. 8.
    Dipper, S., Stede, M.: Disambiguating potential connectives. In: Butt, M. (ed.) Proceedings of KONVENS 2006, Konstanz, pp. 167–173 (2006)Google Scholar
  9. 9.
    Dipper, S., Götze, M., Küssner, U., Stede, M.: Representing and querying standoff XML. In: Proceedings of the Biennial GLDV Conference 2007. Data Structures for Linguistic Resources and Applications, Narr, Tübingen (2007)Google Scholar
  10. 10.
    Endriss, U., Küssner, U., Stede, M.: Repräsentation zeitlicher Ausdrücke: Die Temporal Expression Language. Verbmobil Memo 133, Technical University Berlin, Department of Computer Science (1998)Google Scholar
  11. 11.
    Ernst, C.: Auffinden von Named Entities in Nachrichtentexten. Diplomarbeit, Institut für Linguistik, Universität Potsdam (2008)Google Scholar
  12. 12.
    Evert, S., Carletta, J., O’Donnell, T., Kilgour, J., Vögele, A., Voormann, H.: The nite object model. version 2.1. Tech. rep., University of Edinburgh, Language Technology Group (2003)Google Scholar
  13. 13.
    Grishman, R.: Tipster architecture design document version 2.3. Tech. rep., DARPA (1997),
  14. 14.
    Hearst, M.A.: Multi-paragraph segmentation of expository text. In: Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Las Cruces/NM, pp. 9–16 (1994)Google Scholar
  15. 15.
    Ide, N., Romary, L.: International standard for a linguistic annotation framework. Natural Language Engineering 10(3-4), 211–225 (2004)CrossRefGoogle Scholar
  16. 16.
    Ide, N., Suderman, K.: Graf: A graph-based format for linguistic annotation. In: Proceedings of The Linguistic Annotation Workshop (LAW), Prague (2007)Google Scholar
  17. 17.
    Luft, A.: Automatisches Tagging von zeitlichen Ausdrücken. Diplomarbeit, Institut für Informatik, FH Mittweida (2006)Google Scholar
  18. 18.
    Miller, R.C.: Lightweight structure in text. PhD thesis, Carnegie Mellon University (2002)Google Scholar
  19. 19.
    Schäfer, U.: Integrating deep and shallow natural language processing components - representations and hybrid architectures. PhD thesis, Universität des Saarlandes (2007)Google Scholar
  20. 20.
    Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings of International Conference on New Methods in Language Processing, Manchester, pp. 44–49 (1994)Google Scholar
  21. 21.
    Stede, M., Suriyawongkul, A.: Identifying logical structure and content structure in loosely-structured documents. In: Witt, A., Metzing, D. (eds.) Linguistic Modeling of Information and Markup Languages - Contributions to Language Technology, pp. 81–96. Springer, Dordrecht (2010)CrossRefGoogle Scholar
  22. 22.
    Stuckardt, R.: Design and enhanced evaluation of a robust anaphor resolution algorithm. Computational Linguistics 27(4), 479–506 (2001)CrossRefGoogle Scholar
  23. 23.
    Teufel, S., Moens, M.: Summarizing scientific articles – experiments with relevance and rhetorical status. Computational Linguistics 28(4), 409–445 (2002)CrossRefGoogle Scholar
  24. 24.
    Utiyama, M., Isahara, H.: A statistical model for domain-independent text segmentation. In: Proceedings of the ACL/EACL Conference, Toulouse (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Manfred Stede
    • 1
  • Heike Bieler
    • 1
  1. 1.Applied Computational Linguistics, EB Cognitive ScienceUniversity of PotsdamGolmGermany

Personalised recommendations