Advertisement

Integrated Rotation and Translation for 3D Manipulation on Multi-Touch Interactive Surfaces

  • Marc Herrlich
  • Benjamin Walther-Franks
  • Rainer Malaka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6815)

Abstract

In the domain of 2D graphical applications multi-touch input is already quite well understood and smoothly integrated translation and rotation of objects widely accepted as a standard interaction technique. However, in 3D VR, modeling, or animation applications, there are no such generally accepted interaction techniques for multi-touch displays featuring the same smooth and fluid interaction style. In this paper we present two novel techniques for integrated 6 degrees of freedom object manipulation on multi-touch displays. They are designed to transfer the smooth 2D interaction properties provided by multi-touch input to the 3D domain. One makes separation of rotation and translation easier, while the other strives for maximum integration of rotation and translation. We present a first user study showing that while both techniques can be used successfully for unimanual and bimanual integrated 3D rotation and translation, the more integrated technique is faster and easier to use.

Keywords

3d multi-touch integrated manipulation gestures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hancock, M., Carpendale, S., Cockburn, A.: Shallow-depth 3d interaction: design and evaluation of one-, two- and three-touch techniques. In: Proc. CHI, pp. 1147–1156. ACM, New York (2007), http://dx.doi.org/10.1145/1240624.1240798 Google Scholar
  2. 2.
    Hancock, M., Carpendale, S., Vernier, F., Wigdor, D., Shen, C.: Chia Shen: Rotation and translation mechanisms for tabletop interaction. In: Proc. TABLETOP, pp. 79–88. IEEE, Los Alamitos (2006), http://dx.doi.org/10.1109/TABLETOP.2006.26 Google Scholar
  3. 3.
    Hancock, M., Cate, T.T., Carpendale, S.: Sticky tools: Full 6dof force-based interaction for multi-touch tables. In: Proc. ITS (2009)Google Scholar
  4. 4.
    Hancock, M., Hilliges, O., Collins, C., Baur, D., Carpendale, S.: Exploring tangible and direct touch interfaces for manipulating 2d and 3d information on a digital table. In: Proc. ITS (2009)Google Scholar
  5. 5.
    Jacob, R.J.K., Sibert, L.E., McFarlane, D.C., Mullen, M.P.: Integrality and separability of input devices. Comput.-Hum. Interact. 1(1), 3–26 (1994), http://dx.doi.org/10.1145/174630.174631 Google Scholar
  6. 6.
    Kruger, R., Carpendale, S., Scott, S.D., Tang, A.: Fluid integration of rotation and translation. In: Proc. CHI, pp. 601–610. ACM, New York (2005), http://dx.doi.org/10.1145/1054972.1055055 Google Scholar
  7. 7.
    Martinet, A., Casiez, G., Grisoni, L.: The design and evaluation of 3d positioning techniques for multi-touch displays. In: Proc. 3DUI, pp. 115–118. IEEE Computer Society, Los Alamitos (2010), http://dx.doi.org/10.1109/3DUI.2010.5444709 Google Scholar
  8. 8.
    Matejka, J., Grossman, T., Lo, J., Fitzmaurice, G.: The design and evaluation of multi-finger mouse emulation techniques. In: Proc. CHI, pp. 1073–1082. ACM, New York (2009), http://dx.doi.org/10.1145/1518701.1518865 Google Scholar
  9. 9.
    Moscovich, T., Hughes, J.F.: Multi-finger cursor techniques. In: Proc. GI, pp. 1–7. Canadian Information Processing Society (2006), http://portal.acm.org/citation.cfm?id=1143081
  10. 10.
    Moscovich, T., Hughes, J.F.: Indirect mappings of multi-touch input using one and two hands. In: Proc. CHI, pp. 1275–1284. ACM, New York (2008), http://dx.doi.org/10.1145/1357054.1357254 Google Scholar
  11. 11.
    Nacenta, M.A., Baudisch, P., Benko, H., Wilson, A.: Separability of spatial manipulations in multi-touch interfaces. In: Proc. GI, pp. 175–182. Canadian Information Processing Society (2009), http://portal.acm.org/citation.cfm?id=1555919
  12. 12.
    Olsen, D.R.: Evaluating user interface systems research. In: Proc. UIST, pp. 251–258. ACM, New York (2007), http://dx.doi.org/10.1145/1294211.1294256 Google Scholar
  13. 13.
    Reisman, J.L., Davidson, P.L., Han, J.Y.: A screen-space formulation for 2d and 3d direct manipulation. In: Proc. UIST, pp. 69–78. ACM, New York (2009), http://dx.doi.org/10.1145/1622176.1622190 Google Scholar
  14. 14.
    Wilson, A.D.: Simulating grasping behavior on an imaging interactive surface. In: ITS (2009)Google Scholar
  15. 15.
    Wilson, A.D., Izadi, S., Hilliges, O., Mendoza, A.G., Kirk, D.: Bringing physics to the surface. In: Proc. UIST, pp. 67–76. ACM, New York (2008), http://dx.doi.org/10.1145/1449715.1449728 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marc Herrlich
    • 1
  • Benjamin Walther-Franks
    • 1
  • Rainer Malaka
    • 1
  1. 1.Research Group Digital MediaTZI, University of BremenBremenGermany

Personalised recommendations