Artificial MicroRNA and Its Applications

Chapter

Abstract

Enhanced understanding of cellular microRNA (miRNA) biogenesis machinery has allowed researchers to engineer synthetic or artificial miRNAs (amiRNAs) that can be designed to direct efficient silencing of any transcript. The amiRNA technology has not only widened the existing gene silencing tool kit but also offers several distinct improvements over existing RNAi approaches, primarily based on siRNA generating hairpin RNA precursors. amiRNAs have already been applied to a wide range of agricultural and medical applications. This chapter discusses various aspects of miRNA processing, design principles of amiRNA expression vectors and their application.

Keywords

Artificial microRNA Gene silencing microRNA 

References

  1. Ai T, Zhang L, Gao Z et al (2011) Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biol (Stuttg) 13:304–316. doi:10.1111/j.1438-8677.2010.00374.xCrossRefGoogle Scholar
  2. Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151PubMedCrossRefGoogle Scholar
  3. Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13:807–818PubMedCrossRefGoogle Scholar
  4. Baeka MN, Junga KH, Haldera D, Choia MR, Leea B, Leeb B, Jungb MH, Choib I, Chungc M, Ohd D, Chaia YG (2010) Artificial microRNA-based neurokinin-1 receptor gene silencing reduces alcohol consumption in mice. Neurosci 475:124–128. doi:10.1016/j.neulet.2010.03.051CrossRefGoogle Scholar
  5. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  6. Bogerd HP, Karnowski HW, Cai X, Shin J, Pohlers M, Cullen BR (2010) A mammalian herpesvirus uses noncanonical expression and processing mechanisms to generate viral MicroRNAs. Mol Cell 37:135–142PubMedCrossRefGoogle Scholar
  7. Bollman KM, Aukerman MJ, Park M, Hunter C, Berardini TZ, Poethig RS (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130:1493–1504PubMedCrossRefGoogle Scholar
  8. Bologna NG, Mateos JL, Bresso EG, Palatnik JF (2009) A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J 28(23):3646–3656. doi:10.1038/emboj.2009.292PubMedCrossRefGoogle Scholar
  9. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190PubMedCrossRefGoogle Scholar
  10. Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966PubMedCrossRefGoogle Scholar
  11. Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S, Ma E, Mane S, Hannon GJ, Lawson ND, Wolfe SA, Giralde AJ (2010) A novel microRNA processing pathway independent of Dicer requires AGO2 catalytic activity. Science 328:1694–1698PubMedCrossRefGoogle Scholar
  12. Czech B, Zhou R, Erlich Y, Brennecke J, Binari R, Villatta C, Gordon A, Perrimon N, Hannon GJ (2009) Hierarchical rules for Argonate loading in Drosophila. Mol Cell 36:445–456PubMedCrossRefGoogle Scholar
  13. Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A (2010) Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 13:373–84CrossRefGoogle Scholar
  14. Djuranovic S, Nahvi A, Green R (2011) A parsimonious model for gene regulation by miRNAs. Science 331:550–553. doi:10.1126/science.1191138PubMedCrossRefGoogle Scholar
  15. Du J, Gao S, Luo J et al (2011) Effective inhibition of foot-and-mouth disease virus (FMDV) replication in vitro by vector-delivered microRNAs targeting the 3D gene. Virol J 8:292. doi:10.1186/1743-422X-8-292PubMedCrossRefGoogle Scholar
  16. Duan C-G, Wang C-H, Fang R-X, Guo H-S (2008) Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol 82:11084–11085PubMedCrossRefGoogle Scholar
  17. Fang Y, Spector DL (2007) Identification of nuclear dicing bodies containing proteins for MicroRNA biogenesis in living Arabidopsis plants. Curr Biol 17:818–823PubMedCrossRefGoogle Scholar
  18. Felippes FFD, Ott F, Weigel D (2011) Comparative analysis of non-autonomous effects of tasiRNAs and miRNAs in Arabidopsis thaliana. Nucleic Acids Res 39(7):2880–2889. doi:10.1093/nar/gkq1240PubMedCrossRefGoogle Scholar
  19. Gao Y, Yu L, Wei W, Li J, Luo Q, Shen J (2008) Inhibition of hepatitis B virus gene expression and replication by artificial microRNA. World J Gastroenterol 14:4684–4689PubMedCrossRefGoogle Scholar
  20. Han N, Chu LS, Cao J et al. (2010) [Construction and application of an artificial microRNA expression vector for inhibiting PAR4] 26(11):1105–7Google Scholar
  21. Hu T, Fu Q, Chen P, Ma L, Sin O, Guo D (2009) Construction of an artificial MicroRNA expression vector for simultaneous inhibition of multiple genes in mammalian cells. Int J Mol Sci 10(5):2158–68PubMedCrossRefGoogle Scholar
  22. Hu T, Chen P, Fu Q, Liu Y, Ishaq M, Li J, Ma L, Guo D (2010) Comparative studies of various artificial microRNA expression vectors for RNAi in mammalian cells. Mol Biotechnol 46:34–40PubMedCrossRefGoogle Scholar
  23. Huang V, Qin Y, Wang J, Wang X, Place RF, Lin G, Lue TF, Li L (2010) RNAa is conserved in mammalian cells. PLoS One 5:e8848PubMedCrossRefGoogle Scholar
  24. Israsena N, Supavonwong P, Ratanasetyuth N, Khawplod P, Hemachudha T (2009) Inhibition of rabies virus replication by multiple artificial microRNAs. Antiviral Res 84:76–8PubMedCrossRefGoogle Scholar
  25. Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W (2008) Specific gene silencing by artificial microRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol 148:684PubMedCrossRefGoogle Scholar
  26. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216PubMedCrossRefGoogle Scholar
  27. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385PubMedCrossRefGoogle Scholar
  28. Kim DH, Sætrom P, Snøve O, Rossi JJ (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 105:16230–16235. doi:10.1073/pnas.0808830105PubMedCrossRefGoogle Scholar
  29. Liang Z, Wu H, Reddy S, Zhu A, Wang S, Blevins D, Yoon Y, Zhang Y, Shim H (2007) Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochem Biophys Res Commun 363:542–546PubMedCrossRefGoogle Scholar
  30. Liu C, Zhang L, Sun J, Luo Y, Wang M, Fan Y, Wang L (2010) A simple artificial microRNA vector based on ath-miR169d precursor from Arabidopsis. Mol Biol Rep 37:903–909PubMedCrossRefGoogle Scholar
  31. Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95–98PubMedCrossRefGoogle Scholar
  32. Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23:3356–3364PubMedCrossRefGoogle Scholar
  33. Mateos JL, Bologna NG, Chorostecki U, Palatnik JF (2009) Identification of MicroRNA processing determinants by random mutagenesis of Arabidopsis MIR172a precursor. Curr Biol 20:49–54. doi:10.1016/j.cub.2009.10.072PubMedCrossRefGoogle Scholar
  34. McBride JL, Boudreau RL, Harper SQ, Staber PD, Monteys AM, Martins I, Gilmore BL, Burstein H, Peluso RW, Polisky B, Carter BJ, Davidson BL (2008) Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci USA 105:5868–5873PubMedCrossRefGoogle Scholar
  35. Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428PubMedCrossRefGoogle Scholar
  36. Ono M, Scot MS, Yamada K, Avolio F, Barton GJ, Lamond AI (2011) Identification of human miRNA precursors that resemble box C/D snoRNA. Nucleic Acids Res 39:3879–3891PubMedCrossRefGoogle Scholar
  37. Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81:6690PubMedCrossRefGoogle Scholar
  38. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330PubMedCrossRefGoogle Scholar
  39. Rieder B, Neuhaus HE (2011) Identification of an Arabidopsis Plasma membrane—located ATP transporter important for anther development. Plant Cell Online. doi:10.1105/tpc.111.084574Google Scholar
  40. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86PubMedCrossRefGoogle Scholar
  41. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121PubMedCrossRefGoogle Scholar
  42. Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208PubMedCrossRefGoogle Scholar
  43. Shepherd DN, Martin DP, Thomson JA (2009) Transgenic strategies for developing crops resistant to geminiviruses. Plant Sci 176:1–11CrossRefGoogle Scholar
  44. Shi R, Yang C, Lu S, Sederoff R, Chiang VL (2010) Specific down-regulation of PAL genes by artificial microRNAs in Populus trichocarpa. Planta 232:1281–1288. doi:10.1007/s00425-010-1253-3PubMedCrossRefGoogle Scholar
  45. Shi JX, Malitsky S, De Oliveira S, Branigan C, Franke RB et al (2011) SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs. PLoS Genet 7(5):e1001388. doi:10.1371/journal.pgen.1001388PubMedCrossRefGoogle Scholar
  46. Song L, Michael J, Axtell FNV (2010) RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr Biol 20:37–41. doi:10.1016/j.cub.2009.10.076PubMedCrossRefGoogle Scholar
  47. Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63PubMedCrossRefGoogle Scholar
  48. Tang X, Sun J, Wang X, Du L, Liu P (2010a) Blocking neuropilin-2 enhances corneal allograft survival by selectively inhibiting lymphangiogenesis on vascularized beds. Mol Vis 16:2354–2361PubMedGoogle Scholar
  49. Tang Y, Wang F, Zhao J, Xie K, Hong Y, Liu Y (2010b) Virus-Based MicroRNA expression for gene functional analysis in plants. Plant Physiol 153:632–641PubMedCrossRefGoogle Scholar
  50. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: MicroRNAs can up-regulate translation. Science 318:1931–1934PubMedCrossRefGoogle Scholar
  51. Wang E, HsiehLi H, Chiou Y et al (2010a) Progressive renal distortion by multiple cysts in transgenic mice expressing artificial microRNAs against Pkd1. J Pathol 222:238–248. doi:10.1002/path.2765PubMedCrossRefGoogle Scholar
  52. Wang X, Yang Y, Yu C, Zhou J, Cheng Y, Yan C, Chen J (2010b) A highly efficient method for construction of rice artificial MicroRNA vectors. Mol Biotechnol 3:211–218. doi:10.1007/s12033-010-9291-4CrossRefGoogle Scholar
  53. Warthmann N, Chen H, Ossowski S, Weigel D, Hervé P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3:e1829PubMedCrossRefGoogle Scholar
  54. Werner S, Wollmann H, Schneeberger K, Weigel D (2010) Structure determinants for accurate processing of miR172a in Arabidopsis thaliana. Curr Biol 20:42–48. doi:10.1016/j.cub.2009.10.073PubMedCrossRefGoogle Scholar
  55. Wheatley AK, Kramski M, Alexander MR, Toe JG, Center RJ, Purcell DFJ (2011) Co-expression of miRNA targeting the expression of PERK, but not PKR, enhances cellular immunity from an HIV-1 Env DNA vaccine. PLoS One 6(3):e18225PubMedCrossRefGoogle Scholar
  56. Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789PubMedCrossRefGoogle Scholar
  57. Xue L, Yuan Q, Yang Y, Wu J (2009) Enzymatic preparation of an artificial microRNA library. Biochem Biophys Res Commun 390:791–796PubMedCrossRefGoogle Scholar
  58. Yadava P (2010) Designing artificial microRNAs as a combat strategy against a plant geminivirus. PhD thesis. ICGEB-Jawaharlal Nehru UniversityGoogle Scholar
  59. Yadava P (2011) Artificial microRNA: a third generation RNAi technology. In: Gaur RK, Gafni Y, Sharma P, Gupta PK (eds) iRNA technology. Science Publishers, New HampshireGoogle Scholar
  60. Yadava P, Mukherjee SK (2010) Engineering geminivirus resistance in tomatoes using artificial microRNAs. Keystone Symposium on RNA Silencing Mechanisms in Plants, Santa Fe, NM, USA, 21–26 Feb 2010Google Scholar
  61. Yadava P, Suyal G, Mukherjee SK (2010) Begomovirus DNA replication and pathogenecity. Curr Sci 98:360–369Google Scholar
  62. Yan H, Deng X, Cao Y et al (2011) A novel approach for the construction of plant amiRNA expression vectors. J Biotechnol 151:9–14. doi:10.1016/j.jbiotec.2010.10.078PubMedCrossRefGoogle Scholar
  63. Yang JS, Maurine T, Robine N, Rasmussen KD, Jeffrey KL, Chanwani R, Papapetroud EP, Sadelain M, O’Carrol D, Lai EC (2010) Conserved vertebrate miR-451 provide a platform for Dicer-independent, AGO2 mediated microRNA biogenesis. Proc Natl Acad Sci USA 107:15163–15168PubMedCrossRefGoogle Scholar
  64. Yang JS, Phillips MD, Betel D, Mu P, Ventura A, Siepel AC, Chen KC, Lai EC (2011) Widespread regulatory activity of vertebrate microRNA* species. RNA 17:312–326PubMedCrossRefGoogle Scholar
  65. Ye X, Liu Z, Hemida MG, Yang D (2011) Targeted delivery of mutant tolerant anti-coxsackievirus artificial microRNAs using folate conjugated bacteriophage Phi29 pRNA. PLoS One 6(6):e21215. doi:10.1371/journal.pone.0021215PubMedCrossRefGoogle Scholar
  66. Yeoh CC, Balcerowicz M, Laurie R, Macknight R, Putterill J (2011) Developing a method for customized induction of flowering. BMC Biotechnol 11:36. doi:10.1186/1472-6750-11-36PubMedCrossRefGoogle Scholar
  67. Yi R, Doehle BP, Qin Y, Macara IG, Cullen BR (2005) Overexpression of Exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA 11:220–226PubMedCrossRefGoogle Scholar
  68. Yoo SK, Hong SM, Lee JS, Ahn JH (2011) A genetic screen for leaf movement mutants identifies a potential role for AGAMOUS-LIKE 6 (AGL6) in circadian-clock control. Mol Cells 31:281–287. doi:10.1007/s10059-011-0035-5PubMedCrossRefGoogle Scholar
  69. Younger ST, Corey DR (2011) Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res. doi:10.1093/nar/gkr155Google Scholar
  70. Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9:1327–1333PubMedCrossRefGoogle Scholar
  71. Zeng Y, Cai X, Cullen BR (2005) Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymol 392:371PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
  2. 2.Research DepartmentAnkur Seeds Pvt LtdNagpurIndia

Personalised recommendations