Teaching IR: Curricular Considerations

  • Daniel Blank
  • Norbert Fuhr
  • Andreas Henrich
  • Thomas Mandl
  • Thomas Rölleke
  • Hinrich Schütze
  • Benno Stein
Chapter

Abstract

Information retrieval (IR) is nowadays accepted as an important topic in various disciplines. Information science, computer science, information systems, and library science are obvious candidates. But also in disciplines such as marketing, bioinformatics, or linguistics, IR topics are considered important and should be covered by respective curricula. For those who are teaching IR topics, this brings up serious questions: Which topics should be addressed in an IR course? Can one course serve the different target groups? What would be an appropriate set of IR courses to satisfy all potentially interested parties?

In this chapter, we try to provide a landscape giving hints with respect to the topics relevant for the different target groups. In fact, a single IR course will hardly satisfy the needs of all target groups. A coordinated set of smaller IR courses where each group can select an appropriate subset might be a solution. Another important aspect is practical exercises. An IR course has to integrate such exercises, and a huge variety of available tools and frameworks are useful in this respect. This chapter will exemplarily consider some of these tools and discuss their use in IR courses.

References

  1. Al-Maskari A, Sanderson M, Clough P (2007) The relationship between IR effectiveness measures and user satisfaction. In: Proceedings of the 30th annual international ACM SIGIR conference, Amsterdam, pp 773–774Google Scholar
  2. Baeza-Yates R, Ribeiro-Neto B (1999) Modern information retrieval. Addison-Wesley, EnglandGoogle Scholar
  3. Bates MJ (1989) The design of browsing and berrypicking techniques for the online search interface. Online Inf Rev 13(5):407–424CrossRefGoogle Scholar
  4. Bates MJ (1990) Where should the person stop and the information search interface start? Inf Process Manag 26(5):575–591MathSciNetCrossRefGoogle Scholar
  5. Bawden D, Bates J, Steinerov J, Vakkari P, Vilar P (2007) Information retrieval curricula: contexts and perspectives. In: First international BCS workshop on teaching and learning of information retrieval (TLIR 2007), London, UK. http://www.bcs.org/server.php?show = ConWebDoc.8777
  6. Belew RK (2000) Finding out about: a cognitive perspective on search engine technology and the WWW. Cambridge University Press, Cambridge, UKMATHGoogle Scholar
  7. Belkin NJ (1980) Anomalous states of knowledge as a basis for information retrieval. Can J Inf Sci 5:133–143Google Scholar
  8. Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst 30(1–7):107–117CrossRefGoogle Scholar
  9. Buckley C, Lewit FA (1985) Optimization of inverted vector searches. In: Proceedings of the 8th annual international ACM SIGIR conference, Montréal, Québec, Canada, pp 97–110Google Scholar
  10. Buckley C, Voorhees EM (2005) TREC: experiment and evaluation in information retrieval. Retrieval system evaluation. Digital libraries and electronic publishing series. MIT, Cambridge, MA, pp 53–75Google Scholar
  11. Cacheda F, Fernandez D, Lopez R (2008) Experiences on a practical course of web information retrieval: developing a search engine. In: Second international BCS workshop on teaching and learning of information retrieval (TLIR 2008), London, UK. http://www.bcs.org/server.php?show = conWebDoc.22357
  12. Croft B (1995) What do people want from information retrieval? (the top 10 research issues for companies that use and sell IR systems). D-Lib Mag 1:5Google Scholar
  13. Croft B, Lafferty J (2003) (eds) Language modeling for information retrieval. The information retrieval series, vol 13. Kluwer, AmsterdamGoogle Scholar
  14. Croft B, Metzler D, Strohman T (2009) Search engines: information retrieval in practice. Pearson Higher Education, Old Tappan, NJGoogle Scholar
  15. Ellis D (1989) A behavioural approach to information retrieval system design. J Document 45(3):171–212CrossRefGoogle Scholar
  16. Fernández-Luna JM, Huete JF, Macfarlane A, Efthimiadis EN (2009) Teaching and learning in information retrieval. Inf Retr 12(2):201–226CrossRefGoogle Scholar
  17. Grossman DA, Frieder O (2004) Information retrieval: algorithms and heuristics. The information retrieval series, vol 15, 2nd edn. Springer, DordrechtGoogle Scholar
  18. Hearst MA (2009) Search user interfaces. Cambridge University Press, CambridgeGoogle Scholar
  19. Ingwersen P (1992) Information retrieval interaction. Taylor Graham, LondonGoogle Scholar
  20. Järvelin K, Kekäläinen J (2002) Cumulated gain-based evaluation of IR techniques. ACM Trans Inf Syst Security 20(4):422–446Google Scholar
  21. Jurafsky D, Martin J (2008) Speech and language processing. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  22. Kuhlthau CC (1988) Developing a model of the library search process: cognitive and affective aspects. Ref Quart 28(2):232–242Google Scholar
  23. Lieberman H (1995) Letizia: an agent that assists Web browsing. In: International joint conference on artificial intelligence, Montréal, Québec, Canada, pp 924–929Google Scholar
  24. Liu X, Croft BW (2004) Cluster-based retrieval using language models. In: Proceedings of the 27th annual international ACM SIGIR conference, Sheffield, UK, pp 186–193Google Scholar
  25. Mandl T (2008) Recent developments in the evaluation of information retrieval systems: moving towards diversity and practical relevance. Informatica 32:27–38MATHGoogle Scholar
  26. Mann TM (2002) Visualization of search results from the world wide web. Ph.D. thesis, University of Constance, http://kops.ub.uni-konstanz.de/volltexte/2002/751/pdf/Dissertation_Thomas.M.Mann_2002.V.1.07.pdf
  27. Manning CD, Schütze H (1999) Foundations of statistical natural language processing. MIT, Cambridge, MAMATHGoogle Scholar
  28. Manning CD, Raghavan P, Schütze H (2008) Introduction to information retrieval. Cambridge University Press, Cambridge, MAMATHCrossRefGoogle Scholar
  29. Melucci M, Hawking D (2006) Introduction: a perspective on web information retrieval. Inf Retr 9(2):119–122CrossRefGoogle Scholar
  30. Middleton C, Baeza-Yates R (2007) A comparison of open source search engines. Technical Report. http://wrg.upf.edu/WRG/dctos/Middleton-Baeza.pdf
  31. Moffat A, Zobel J, Hawking D (2005) Recommended reading for IR research students. SIGIR Forum 39(2):3–14CrossRefGoogle Scholar
  32. Riggs KR (2002) Exploring IR with Unix tools. J Comput Sci Coll 17(4):179–194Google Scholar
  33. Rijsbergen CJv (1979) Information retrieval. Butterworth, London, UK. http://www.dcs.gla.ac.uk/Keith/Preface.html
  34. Robertson S (2004) Understanding inverse document frequency: On theoretical arguments for idf. J Document 60(5):503–520CrossRefGoogle Scholar
  35. Robertson S (2008) On the history of evaluation in IR. J Inf Sci 34(4):439–456CrossRefGoogle Scholar
  36. Robertson SE, Sparck Jones K (1976) Relevance weighting of search terms. J Am Soc Inf Sci 27(3):129–146CrossRefGoogle Scholar
  37. Robertson SE, Walker S, Jones S, Hancock-Beaulieu M, Gatford M (1994) Okapi at TREC-3. In: NIST Special Publication 500–226: Overview of the Third Text Retrieval Conference (TREC-3), pp 109–126Google Scholar
  38. Rölleke T, Tsikrika T, Kazai G (2006) A general matrix framework for modelling information retrieval. Inf Process Manag 42(1):4–30MATHCrossRefGoogle Scholar
  39. Salton G, Wong A, Yang CS (1975) A vector space model for automatic indexing. Commun ACM 18(11):613–620MATHCrossRefGoogle Scholar
  40. Schaefer A, Jordan M, Klas C-P, Fuhr N (2005) Active support for query formulation in virtual digital libraries: a case study with DAFFODIL. In: 9th European conference on digital libraries, Vienna, Austria, pp 414–425Google Scholar
  41. Shadbolt N, Berners-Lee T, Hall W (2006) The semantic web revisited. IEEE Intell Syst 21(3):96–101CrossRefGoogle Scholar
  42. Shneiderman B (1998) Designing the user interface. Addison-Wesley, Boston, MAGoogle Scholar
  43. Shneiderman B, Maes P (1997) Direct manipulation vs interface agents. ACM Interact 4(6):42–61CrossRefGoogle Scholar
  44. Sparck Jones K, Willett P (eds) (1997) Readings in information retrieval. The Morgan Kaufmann series in multimedia information and systems. Morgan Kaufmann, San FranciscoGoogle Scholar
  45. Stein B (2007) Principles of hash-based text retrieval. In: Proceedings of the 30th annual international ACM SIGIR conference, Amsterdam, pp 527–534Google Scholar
  46. Witten I, Moffat A, Bell T (1999) Managing gigabytes: compressing and indexing documents and images. Morgan Kaufmann, San FranciscoGoogle Scholar
  47. Wong SKM, Yao Y (1995) On modeling information retrieval with probabilistic inference. ACM Trans Inf Syst Security 13(1):38–68Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Daniel Blank
    • 1
  • Norbert Fuhr
    • 2
  • Andreas Henrich
    • 1
  • Thomas Mandl
    • 3
  • Thomas Rölleke
    • 4
  • Hinrich Schütze
    • 5
  • Benno Stein
    • 6
  1. 1.University of BambergBambergGermany
  2. 2.University of Duisburg-EssenDuisburg-EssenGermany
  3. 3.University of HildesheimHildesheimGermany
  4. 4.Queen Mary University of LondonLondonUK
  5. 5.University of StuttgartStuttgartGermany
  6. 6.Bauhaus-Universitat WeimarWeimarGermany

Personalised recommendations