Advertisement

Nanotechnology Based Optical Solution for NP-Hard Problems

(Extended Abstract)
Conference paper
  • 562 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6748)

Abstract

We present a design for a micro optical architecture for solving instances of NP-hard problems, using nano-technology. The architecture is using pre-processed masks to block some of the light propagating through them. We demonstrate how such a device could be used to solve instances of Hamiltonian-cycle and the Permanent problems.

Keywords

Transverse Electric Optical Computing Optical Solution Permanent Problem Optical Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anter, A., Dolev, S.: Optical solution for hard on average #P-complete instances. Natural Computing (2010)Google Scholar
  2. 2.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. of the 3rd Ann. ACM Symp. On Theory of Computing, pp. 151–158 (1971)Google Scholar
  3. 3.
    Dolev, S., Fitoussi, H.: Masking traveling beams: Optical solutions for NP-complete problems, trading space for time. Theoretical Comp. Science 411, 837 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Dolev, S., Fitoussi, H.: Primitive Operations for Graph-Optical Processor. In: 6th Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms (May 2006)Google Scholar
  5. 5.
    Dolev, S., Fitoussi, H.: The Traveling Beams: Optical Solutions for Bounded NP-Complete Problems, Technical report #07-04, Ben Gurion University of the Negev (January 2007)Google Scholar
  6. 6.
    Dolev, S., Korach, E., Uzan, G.: A Method for Encryption and Decryption of Messages, PCT Patent Application WO 2006/001006 (January 2006)Google Scholar
  7. 7.
    Dolev, S., Yuval, N.: Optical implementation of bounded non-deterministic Turing machines, US Patent 7,130,093 B2, January 2005, Filed (May 2004)Google Scholar
  8. 8.
    Feitelson, G.: Optical Computing: A Survey for Computer Scientists. MIT Press, Cambridge (1988)Google Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, a guide to the theory of NP completeness. W. H. Freeman and Company, San Francisco (1979)zbMATHGoogle Scholar
  10. 10.
    Gutfreund, D., Shaltiel, R., Ta-Shma, A.: If NP Languages are Hard on the Worst-Case, then it is easy to find their Hard Instances. Journal of Computational Complexity (2007)Google Scholar
  11. 11.
    Haist, T., Osten, W.: An Optical Solution For The Traveling Salesman Problem. Opt. Express 15, 10473–10482 (2007)CrossRefGoogle Scholar
  12. 12.
    Hopcroft, J.E., Karp, R.M.: An algorithm for maximum matching in bipartite graphs. SIAM J. Computing 2, 225–231 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Hyman, A.: Charles Babbage: Pioneer of the Computer. Princeton University Press, Princeton (1982)zbMATHGoogle Scholar
  14. 14.
    Karp, R.M.: Reducibilty among combinatorial problems. Complexity of Computer Computations, 85–103 (1972)Google Scholar
  15. 15.
  16. 16.
    Mann, H.J., Ulrich, W., Seitz, G.: 8-Mirror microlithography projection objective, US Patent 2004/0012866 A1, January 2004, Filed (April 2003)Google Scholar
  17. 17.
    McAulay, A.D.: Optical computer architectures. John Wiley, Chichester (1991)Google Scholar
  18. 18.
    Oltean, M.: A Light-Based Device for Solving the Hamiltonian Path Problem. In: Calude, C.S., Dinneen, M.J., Păun, G., Rozenberg, G., Stepney, S. (eds.) UC 2006. LNCS, vol. 4135, pp. 217–227. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Oltean, M., Muntean, O.: Solving the subset-sum problem with a light-based device. In: Natural Computing, Springer, Heidelberg (2007)Google Scholar
  20. 20.
    Shaked, N.T., Messika, S., Dolev, S., Rosen, J.: Optical solution for Bounded NP-Complete Problems. Journal of App. Optics 46, 711 (2007)CrossRefGoogle Scholar
  21. 21.
    Reif, J.H., Tygar, D., Yoshida, A.: The Computability and Complexity of Optical Beam Tracing. In: 31st Annual IEEE Symposium on Foundations of Computer Science, pp. 106–114 (1990); Also The Computability and Complexity of Ray Tracing. Discrete and Computational Geometry 11, 265-287 (1994)Google Scholar
  22. 22.
    Tamir, D.E., Shaked, N.T., Wilson, P.J., Dolev, S.: Electro-Optical DSP of Tera Operations per Second and Beyond (Extended Abstract). In: Dolev, S., Haist, T., Oltean, M. (eds.) OSC 2008. LNCS, vol. 5172, pp. 56–69. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    van Emde Boas, P.: Machine Models and Simulation. In: Volume, A. (ed.) Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity (A) pp. 1–66 (1990)Google Scholar
  24. 24.
    Woods, D.: Optical Computing and Computational Complexity. In: Calude, C.S., Dinneen, M.J., Păun, G., Rozenberg, G., Stepney, S. (eds.) UC 2006. LNCS, vol. 4135, pp. 27–40. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Woods, D., Gibson, J.P.: Lower Bounds on the Computational Power of an Optical Model of Computation. In: Calude, C.S., Dinneen, M.J., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 237–250. Springer, Heidelberg (2005); Journal version, Natural Computing 79(1), 95–108 (2008) CrossRefGoogle Scholar
  26. 26.
    Xiajun, W., Zhao, X., Bermak, A., Boussaind, F.: An AER based CMOS Polarization Image Sensor with Photo-aligned Micropolarizer Array. In: Calude, C.S., Dinneen, M.J., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 95–108. Springer, Heidelberg (2005); Journal version. Natural Computing  7(1), 95–108 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Computer ScienceBen Gurion University of the NegevIsrael
  2. 2.Institute of Informatics ProblemsRussian Academy of ScienceRussia
  3. 3.Deutsche Telekom LaboratoriesBen Gurion University of the NegevIsrael
  4. 4.Ilze Katz Institute for Nanoscale Science & TechnologyBen Gurion University of the NegevIsrael

Personalised recommendations