Multirate Time Integration of Field/Circuit Coupled Problems by Schur Complements

  • Sebastian SchöpsEmail author
  • Andreas Bartel
  • Herbert De Gersem
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 16)


When using distributed magnetoquasistatic field models as additional elements in electric circuit simulation, the field equations contribute with large symmetric linear systems that have to be solved. The naive coupling and solving (using direct solvers) is not always efficient, since the electric circuit is coupled only via coils, which are often represented only by a small subset of the unknowns. We revisit the Schur complement approach, give a physical interpretation and show that a heuristics for bypassing Newton iterations allow for efficient multirate time-integration for the field/circuit coupled model.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partially supported by the EU within the ICESTARS project, grant number FP7/2008/ICT/214911, by the German Academic Exchange Service “DAAD Jahresprogramm für Doktoranden” and the post-doc program of the “FG Mathematik und Informatik” of the Bergische Universität Wuppertal.


  1. 1.
    Vaananen, J.: Circuit theoretical approach to couple two-dimensional finite element with external circuit equations. IEEE Trans. Magn. 32(2), 400–410 (1996)CrossRefGoogle Scholar
  2. 2.
    Feldmann, U., Miyake, M., Kajiwara, T., Miura-Mattausch, M.: On local handling of inner equations in compact models. In: Roos and Costa: Scientific Computing in Electrical Engineering SCEE 2008, pp. 143–150. Springer, Berlin (2010)Google Scholar
  3. 3.
    Feldmann, U., Günther, M.: CAD-based electric-circuit modeling in industry I: mathematical structure and index of network equations. Surv. Math. Ind. 8(2), 97–129 (1999)zbMATHGoogle Scholar
  4. 4.
    Bartel, A., Baumanns, S., Schöps, S.: Structural analysis of electrical circuits including magnetoquasistatic devices. Submitted.Google Scholar
  5. 5.
    Schöps, S., Bartel, A., De Gersem, H., Günther, M.: DAE-index and convergence analysis of lumped electric circuits refined by 3-D MQS conductor models. In: Roos and Costa: Scientific Computing in Electrical Engineering SCEE 2008, pp. 341–350. Springer, Berlin (2010)Google Scholar
  6. 6.
    De Gersem, H., Weiland, T.: Field-circuit coupling for time-harmonic models discretized by the finite integration technique. IEEE Trans. Magn. 40(2), 1334–1337 (2004)CrossRefGoogle Scholar
  7. 7.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer Series in Computational Mathematics. Springer, Berlin (1996)zbMATHGoogle Scholar
  8. 8.
    Schöps, S., De Gersem, H., Bartel, A.: A cosimulation framework for multirate time-integration of field/circuit coupled problems. IEEE Trans. Magn. 46(8), 3233–3236 (2010)CrossRefGoogle Scholar
  9. 9.
    Wimmer, G., Steinmetz, T., Clemens, M.: Reuse, recycle, reduce (3r) – strategies for the calculation of transient magnetic fields. Appl. Numer. Math. 59(3-4), 830–844 (2008)MathSciNetGoogle Scholar
  10. 10.
    Clemens, M., Weiland, T.: Iterative methods for the solution of very large complex-symmetric linear systems in electrodynamics. In: CMCMM, vol. 2, pp. 1–7 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sebastian Schöps
    • 1
    • 2
    Email author
  • Andreas Bartel
    • 1
  • Herbert De Gersem
    • 2
  1. 1.Institut für Numerische AnalysisBergische Universität WuppertalWuppertalGermany
  2. 2.Wave Propagation and Signal Processing Research GroupKatholieke Universiteit Leuven - Campus KortrijkKortrijkBelgium

Personalised recommendations