A Convergent Iteration Scheme for Semiconductor/Circuit Coupled Problems

  • Giuseppe AlìEmail author
  • Andreas Bartel
  • Markus Brunk
  • Sebastian Schöps
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 16)


A dynamic iteration scheme is proposed for a coupled system of electric circuit and distributed semiconductor (pn-diode) model equations. The device is modelled by the drift-diffusion (DD) equations and the circuit by MNA-equations. The dynamic iteration scheme is investigated on the basis of discrete models and coupling via sources and compact models. The analytic divergence and analytic convergence results are verified numerically.


Algebraic Variable Iteration Scheme Couple Problem Displacement Current Device Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge partial support from the EU within the ICESTARS project, grant number FP7/2008/ICT/214911, from the German Academic Exchange Service “DAAD Jahresprogramm für Doktoranden” and the post-doc program of the “FG Mathematik and Informatik” of the Bergische Universität Wuppertal.


  1. 1.
    Alì, G., Bartel, A., Günther, M.: Parabolic differential-algebraic models in electrical network design. SIAM J. Mult. Model. Sim. 4(3), 813–838 (2005)CrossRefzbMATHGoogle Scholar
  2. 2.
    Arnold, M., Günther, M.: Preconditioned dynamic iteration for coupled differential-algebraic systems. BIT 41(1), 1–25 (2001). DOI 10.1023/A:1021909032551CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bartel, A.: Partial differential-algebraic models in chip design - thermal and semiconductor problems. Ph.D. thesis, Technische Universität Karlsruhe, Düsseldorf (2004). VDI VerlagGoogle Scholar
  4. 4.
    Brunk, M., Kværnø, A.: Positivity preserving discretization of time dependent semiconductor drift-diffusion equations. to apper in APNUM (2010)Google Scholar
  5. 5.
    Denk, G.: Circuit simulation for nanoelectronics. In: Anile, A., Alì, G., Mascali, G. (eds.) Scientific Computing in Electrical Engineering, pp. 13–20. Springer, Berlin (2006)CrossRefGoogle Scholar
  6. 6.
    Ebert, F.: On partitioned simulation of electrical circuits using dynamic iteration methods. Ph.D. thesis, Technische Universität, Berlin (2008)Google Scholar
  7. 7.
    Estévez Schwarz, D., Tischendorf, C.: Structural analysis of electric circuits and consequences for MNA. Int. J. Circ. Theor. Appl. 28(2), 131–162 (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Feldmann, U., Günther, M.: CAD-based electric-circuit modeling in industry I: mathematical structure and index of network equations. Surv. Math. Ind. 8(2), 97–129 (1999)zbMATHGoogle Scholar
  9. 9.
    Marini, D., Pietra, P.: New mixed finite element schemes for current continuity equations. COMPEL 9, 257–268 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Selva Soto, M., Tischendorf, C.: Numerical analysis of DAEs from coupled circuit and semiconductor simulation. Appl. Numer. Math. 53(2-4), 471–488 (2005)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Giuseppe Alì
    • 1
    Email author
  • Andreas Bartel
    • 2
  • Markus Brunk
    • 2
  • Sebastian Schöps
    • 2
  1. 1.Dipartimento di MatematicaUniversitá della Calabria and INFN-Gruppo c. CosenzaArcavacata di Rende (CS)Italy
  2. 2.Institut für Numerische Analysis, FB CBergische Universität WuppertalWuppertalGermany

Personalised recommendations