Advertisement

Transient Full Maxwell Computation of Slow Processes

  • J. Ostrowski
  • R. Hiptmair
  • F. Krämer
  • J. Smajic
  • T. Steinmetz
Chapter
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 16)

Abstract

This article deals with finite element solution of the full linear Maxwell’s equations. The focus lies on the transient simulation of slow processes, i.e. of processes, where wave propagation does not play a role. We employ an implicit Euler method for time discretization of the A, φ-based Galerkin-formulation with Coulomb-gauge. We propose a novel stabilization technique that makes possible the use of very large timesteps. This is of supreme importance for efficient simulation of slow processes in order to keep the number of timesteps reasonably small. The greatly improved robustness in comparison with a standard formulation is demonstrated through numerical experiments. As an example we simulate the lightning impulse test of an industrial dry-type transformer.

Keywords

Temporal Gauge Implicit Euler Method Prescribe Charge Electric Scalar Potential Effective Material Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Comsol website, URL http://www.comsol.com
  2. 2.
    Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numerica 11, 237–339 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Hiptmair, R., Krämer, F., Ostrowski, J.: A robust Maxwell formulation for all frequencies. IEEE Trans. Magn. 44(6), 682–685 (2008)CrossRefGoogle Scholar
  4. 4.
    Hiptmair, R., Sterz, O.: Current and voltage excitations for the eddy current model. Int. J. Numer. Model 18(1), 1–21 (2005)CrossRefzbMATHGoogle Scholar
  5. 5.
    International standard IEC 60076-11: Dry-type transformers. International Electrotechnical Commission, Geneve, Switzerland (2004)Google Scholar
  6. 6.
    Ostrowski, J., Bebendorf, M., Hiptmair, R., Krämer, F.: H-matrix based operator preconditioning for full maxwell at low frequencies. IEEE Trans. magn. 46(8), 3193–3196 (2010)CrossRefGoogle Scholar
  7. 7.
    Pardiso website, www.pardiso-project.org
  8. 8.
    van Rienen, U.: Numerical methods in computational electrodynamics. In: Lecture Notes in Computational Science and Engineering, vol. 12. Springer, Berlin (2001)Google Scholar
  9. 9.
    Sabariego, R., Dular, P., Gyselinck, J.: Time-domain homogenization of windings in 3-d finite element models. IEEE Trans. magn. 44(6), 1302–1305 (2008)CrossRefGoogle Scholar
  10. 10.
    Schmidt, K., Sterz, O., Hiptmair, R.: Estimating the eddy-current modelling error. IEEE Trans. Magn. 44(6), 686–689 (2008)CrossRefGoogle Scholar
  11. 11.
    Steinmetz, T., Kurz, S., Clemens, M.: Domains of validity of quasistatic and quasistationary field approximations. Submitted to COMPEL 30(4), 1237–1247 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • J. Ostrowski
    • 1
  • R. Hiptmair
    • 2
  • F. Krämer
    • 2
  • J. Smajic
    • 1
  • T. Steinmetz
    • 1
  1. 1.ABB Switzerland Ltd., Corporate ResearchBadenSwitzerland
  2. 2.Seminar for Applied MathematicsETH ZürichZurichSwitzerland

Personalised recommendations