Advertisement

Time-Varying Graphs and Dynamic Networks

  • Arnaud Casteigts
  • Paola Flocchini
  • Walter Quattrociocchi
  • Nicola Santoro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6811)

Abstract

The past decade has seen intensive research efforts on highly dynamic wireless and mobile networks (variously called delay-tolerant, disruptive-tolerant, challenged, opportunistic, etc) whose essential feature is a possible absence of end-to-end communication routes at any instant. As part of these efforts, a number of important concepts have been identified, based on new meanings of distance and connectivity. The main contribution of this paper is to review and integrate the collection of these concepts, formalisms, and related results found in the literature into a unified coherent framework, called TVG (for time-varying graphs).Besides this definitional work, we connect the various assumptions through a hierarchy of classes of TVGs defined with respect to properties with algorithmic significance in distributed computing. One of these classes coincides with the family of dynamic graphs over which population protocols are defined. We examine the (strict) inclusion hierarchy among the classes. The paper also provides a quick review of recent stochastic models for dynamic networks that aim to enable analytical investigation of the dynamics.

Keywords

Highly dynamic networks delay-tolerant networks challenged networks time-varying graphs evolving graphs dynamic graphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distributed Computing 20(4), 279–304 (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic graphs. In: Proc. 28th ACM Symp. on Principles of Distributed Computing (PODC), pp. 260–269 (2009)Google Scholar
  4. 4.
    Berman, K.A.: Vulnerability of scheduled networks and a generalization of Menger’s Theorem. Networks 28(3), 125–134 (1996)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bhadra, S., Ferreira, A.: Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks. In: Proc. 2nd Intl. Conf. on Ad Hoc Networks and Wireless (AdHoc-Now), pp. 259–270 (2003)Google Scholar
  6. 6.
    Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Intl. J. of Foundations of Comp. Science 14(2), 267–285 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Burgess, J., Gallagher, B., Jensen, D., Levine, B.N.: Maxprop: Routing for vehicle-based disruption-tolerant networks. In: Proc. 25th IEEE Conference on Computer Communications (INFOCOM), pp. 1–11 (2006)Google Scholar
  8. 8.
    Casteigts, A., Chaumette, S., Ferreira, A.: On the assumptions about network dynamics in distributed computing. Arxiv preprint arXiv:1102.5529 (2011); A preliminary version appeared in SIROCCO (2009)Google Scholar
  9. 9.
    Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Deterministic computations in time-varying graphs: Broadcasting under unstructured mobility. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 111–124. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Measuring temporal lags in delay-tolerant networks. In: Proc. 25th IEEE International Parallel and Distributed Processing Symposium, IPDPS (2011)Google Scholar
  11. 11.
    Chaintreau, A., Mtibaa, A., Massoulie, L., Diot, C.: The diameter of opportunistic mobile networks. Communications Surveys & Tutorials 10(3), 74–88 (2008)CrossRefGoogle Scholar
  12. 12.
    Clementi, A., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time in edge-markovian dynamic graphs. In: Proc. 27th ACM Symp. on Principles of Distributed Computing (PODC), pp. 213–222 (2008)Google Scholar
  13. 13.
    Clementi, A., Pasquale, F.: Information Spreading in Dynamic Networks: An Analytical Approach. In: Nikoletseas, S., Rolim, J. (eds.) Theoretical Aspects of Distributed Computing in Sensor Networks. Springer, Heidelberg (2010)Google Scholar
  14. 14.
    Ferreira, A.: Building a reference combinatorial model for MANETs. IEEE Network 18(5), 24–29 (2004)CrossRefGoogle Scholar
  15. 15.
    Flocchini, P., Kellett, M., Mason, P., Santoro, N.: Mapping an unfriendly subway system. In: Proc. 5th Intl. Conf. on Fun with Algorithms, pp. 190–201 (2010)Google Scholar
  16. 16.
    Flocchini, P., Mans, B., Santoro, N.: Exploration of periodically varying graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 534–543. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Harary, F., Gupta, G.: Dynamic graph models. Mathematical and Computer Modelling 25(7), 79–88 (1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    Holme, P.: Network reachability of real-world contact sequences. Physical Review E 71(4), 46119 (2005)CrossRefGoogle Scholar
  19. 19.
    Jain, S., Fall, K., Patra, R.: Routing in a delay tolerant network. In: Proc. Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM), pp. 145–158 (2004)Google Scholar
  20. 20.
    Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. In: Proc. 32nd ACM Symp. on Theory of Computing (STOC), page 513 (2000)Google Scholar
  21. 21.
    Kossinets, G., Kleinberg, J., Watts, D.: The structure of information pathways in a social communication network. In: Proc. 14th Intl. Conf. on Knowledge Discovery and Data Mining (KDD), pp. 435–443 (2008)Google Scholar
  22. 22.
    Kostakos, V.: Temporal graphs. Physica A 388(6), 1007–1023 (2009)CrossRefGoogle Scholar
  23. 23.
    Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Proc. 42nd ACM Symp. on Theory of Computing, pp. 513–522 (2010)Google Scholar
  24. 24.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and shrinking diameters. ACM Trans. on Knowledge Discovery from Data 1(1) (2007)Google Scholar
  25. 25.
    Liu, C., Wu, J.: Scalable routing in cyclic mobile networks. IEEE Trans. Parallel Distrib. Syst. 20(9), 1325–1338 (2009)CrossRefGoogle Scholar
  26. 26.
    O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs. In: Proc. Workshop on Foundations of Mobile Computing (DIALM-POMC), pp. 104–110 (2005)Google Scholar
  27. 27.
    Ramanathan, R., Basu, P., Krishnan, R.: Towards a formalism for routing in challenged networks. In: Proc. 2nd ACM Workshop on Challenged Networks (CHANTS), pp. 3–10 (2007)Google Scholar
  28. 28.
    Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Characterising temporal distance and reachability in mobile and online social networks. ACM Computer Communication Review 40(1), 118–124 (2010)CrossRefGoogle Scholar
  29. 29.
    Zhang, X., Kurose, J., Levine, B.N., Towsley, D., Zhang, H.: Study of a bus-based disruption-tolerant network: mobility modeling and impact on routing. In: Proc. 13th ACM Int. Conf. on Mobile Computing and Networking, pp. 195–206 (2007)Google Scholar
  30. 30.
    Zhang, Z.: Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: Overview and challenges. IEEE Comm. Surveys & Tutorials 8(1), 24–37 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Arnaud Casteigts
    • 1
  • Paola Flocchini
    • 1
  • Walter Quattrociocchi
    • 2
  • Nicola Santoro
    • 3
  1. 1.University of OttawaCanada
  2. 2.University of SienaCanada
  3. 3.Carleton UniversityCanada

Personalised recommendations