Model Evolution with Equality Modulo Built-in Theories

  • Peter Baumgartner
  • Cesare Tinelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6803)

Abstract

Many applications of automated deduction require reasoning modulo background theories, in particular some form of integer arithmetic. Developing corresponding automated reasoning systems that are also able to deal with quantified formulas has recently been an active area of research. We contribute to this line of research and propose a novel instantiation-based method for a large fragment of first-order logic with equality modulo a given complete background theory, such as linear integer arithmetic. The new calculus is an extension of the Model Evolution Calculus with Equality, a first-order logic version of the propositional DPLL procedure, including its ordering-based redundancy criteria. We present a basic version of the calculus and prove it sound and (refutationally) complete under certain conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 84–99. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierachic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212 (1994)CrossRefMATHGoogle Scholar
  3. 3.
    Baumgartner, P., Fuchs, A., Tinelli, C.: ME(LIA) - model evolution with linear integer arithmetic constraints. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 258–273. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Baumgartner, P., Tinelli, C.: The Model Evolution Calculus with Equality. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 392–408. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Baumgartner, P., Waldmann, U.: Superposition and Model Evolution Combined. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 17–34. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Ganzinger, H., Korovin, K.: Theory instantiation. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 497–511. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Ge, Y., Barrett, C.W., Tinelli, C.: Solving quantified verification conditions using satisfiability modulo theories. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 167–182. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Peter Baumgartner
    • 1
  • Cesare Tinelli
    • 2
  1. 1.NICTA and Australian National UniversityCanberraAustralia
  2. 2.The University of IowaUSA

Personalised recommendations