Translating between Language and Logic: What Is Easy and What Is Difficult

  • Aarne Ranta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6803)


Natural language interfaces make formal systems accessible in informal language. They have a potential to make systems like theorem provers more widely used by students, mathematicians, and engineers who are not experts in logic. This paper shows that simple but still useful interfaces are easy to build with available technology. They are moreover easy to adapt to different formalisms and natural languages. The language can be made reasonably nice and stylistically varied. However, a fully general translation between logic and natural language also poses difficult, even unsolvable problems. This paper investigates what can be realistically expected and what problems are hard.


Grammatical Framework natural language interface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolfram Research, I.: Mathematica Homepage (2000),
  2. 2.
    Bobrow, D.G.: Natural Language Input for a Computer Problem Solving System. PhD thesis, Massachusetts Institute of Technology (1964)Google Scholar
  3. 3.
    de Bruijn, N.G.: Mathematical Vernacular: a Language for Mathematics with Typed Sets. In: Nederpelt, R. (ed.) Selected Papers on Automath, pp. 865–935. North-Holland Publishing Company, Amsterdam (1994)CrossRefGoogle Scholar
  4. 4.
    Trybulec, A.: The Mizar Homepage (2006),
  5. 5.
    Benzmüller, C., Cheikhrouhou, L., Fehrer, D., Fiedler, A., Huang, K.M., Kohlhase, M., Konrad, K., Melis, E., Meier, A., Schaarschmidt, W., Siekmann, J., Sorge, V.: Omega: Towards a mathematical assistant. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Wenzel, M.: Isar - a generic interpretative approach to readable formal proof documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 167–184. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Zinn, C.: Understanding Informal Mathematical Discourse. PhD thesis, Department of Computer Science, University of Erlangen-Nürnberg (2010)Google Scholar
  8. 8.
    Buchberger, B., Craciun, A., Jebelean, T., Kovács, L., Kutsia, T., Nakagawa, K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M.: Theorema: Towards computer-aided mathematical theory exploration. J. Applied Logic 4(4), 470–504 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Kamareddine, F., Wells, J.B.: Computerizing Mathematical Text with MathLang. Electr. Notes Theor. Comput. Sci. 205, 5–30 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Cramer, M., Fisseni, B., Koepke, P., Kühlwein, D., Schröder, B., Veldman, J.: The Naproche Project Controlled Natural Language Proof Checking of Mathematical Texts. In: Fuchs, N.E. (ed.) CNL 2009. LNCS, vol. 5972, pp. 170–186. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Neumaier, A.: FMathL - Formal Mathematical Language (2009),
  12. 12.
    Ranta, A.: Grammatical Framework: A Type-Theoretical Grammar Formalism. The Journal of Functional Programming 14(2), 145–189 (2004), CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars. CSLI Publications, Stanford (2011) ISBN-10: 1-57586-626-9 (Paper), 1-57586-627-7 (Cloth)Google Scholar
  14. 14.
    Ranta, A.: Grammatical Framework: A Hands-On Introduction. CADE-23 Tutorial, Wroclaw (2011),
  15. 15.
    Peyton Jones, S.: Haskell 98 language and libraries: the Revised Report (2003),
  16. 16.
    Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoretical Computer Science 88, 191–229 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Ranta, A.: Grammars as Software Libraries. In: Bertot, Y., Huet, G., Lévy, J.J., Plotkin, G. (eds.) From Semantics to Computer Science. Essays in Honour of Gilles Kahn, pp. 281–308. Cambridge University Press, Cambridge (2009), CrossRefGoogle Scholar
  18. 18.
    Ranta, A.: The GF Resource Grammar Library. Linguistics in Language Technology 2 (2009),
  19. 19.
    Caprotti, O.: WebALT! Deliver Mathematics Everywhere. In: Proceedings of SITE 2006, Orlando, March 20-24 (2006),
  20. 20.
    Abbott, J., Díaz, A., Sutor, R.S.: A report on OpenMath: a protocol for the exchange of mathematical information. SIGSAM Bull 30, 21–24 (1996)CrossRefGoogle Scholar
  21. 21.
    Saludes, J., Xambó, S.: MOLTO Mathematical Grammar Library (2010),
  22. 22.
    Burke, D.A., Johannisson, K.: Translating Formal Software Specifications to Natural Language / A Grammer-Based Approach. In: Blache, P., Stabler, E.P., Busquets, J.V., Moot, R. (eds.) LACL 2005. LNCS (LNAI), vol. 3492, pp. 51–66. Springer, Heidelberg (2005), CrossRefGoogle Scholar
  23. 23.
    Bringert, B., Ranta, A.: A Pattern for Almost Compositional Functions. The Journal of Functional Programming 18(5-6), 567–598 (2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    Montague, R.: Formal Philosophy. Yale University Press, New Haven (1974); Collected papers edited by Richmond ThomasonGoogle Scholar
  25. 25.
    Barwise, J., Cooper, R.: Generalized quantifiers and natural language. Linguistics and Philosophy 4(2), 159–219 (1981)CrossRefzbMATHGoogle Scholar
  26. 26.
    Sutcliffe, G., Benzmüller, C.: Automated Reasoning in Higher-Order Logic using the TPTP THF Infrastructure. Journal of Formalized Reasoning 3 (2010)Google Scholar
  27. 27.
    Frege, G.: Begriffsschrift. Louis Nebert, Halle A/S (1879)zbMATHGoogle Scholar
  28. 28.
    Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  29. 29.
    Bos, J., Clark, S., Steedman, M., Curran, J.R., Hockenmaier, J.: Wide-Coverage Semantic Representations from a CCG Parser. In: Proceedings of the 20th International Conference on Computational Linguistics (COLING 2004), Geneva, Switzerland, pp. 1240–1246 (2004)Google Scholar
  30. 30.
    Bos, J., Markert, K.: Recognising Textual Entailment with Robust Logical Inference. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 404–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    Angelov, K.: Incremental Parsing with Parallel Multiple Context-Free Grammars. In: Proceedings of EACL 2009, Athens (2009)Google Scholar
  32. 32.
    Ganesalingam, M.: The Language of Mathematics. PhD thesis, Department of Computer Science, University of Cambridge (2010),
  33. 33.
    Barendregt, H.: The Lambda Calculus. Its Syntax and Semantics. North-Holland, Amsterdam (1981)zbMATHGoogle Scholar
  34. 34.
    Ranta, A.: Type Theoretical Grammar. Oxford University Press, Oxford (1994)zbMATHGoogle Scholar
  35. 35.
    Ljunglöf, P.: The Expressivity and Complexity of Grammatical Framework. PhD thesis, Dept. of Computing Science, Chalmers University of Technology and Gothenburg University (2004),
  36. 36.
    Johannisson, K.: Formal and Informal Software Specifications. PhD thesis, Dept. of Computing Science, Chalmers University of Technology and Gothenburg University (2005)Google Scholar
  37. 37.
    Angelov, K., Enache, R.: Typeful Ontologies with Direct Multilingual Verbalization. In: Fuchs, N., Rosner, M. (eds.) CNL 2010, Controlled Natural Language (2010)Google Scholar
  38. 38.
    Coscoy, Y., Kahn, G., Thery, L.: Extracting text from proofs. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 109–123. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  39. 39.
    Coscoy, Y.: Explication textuelle de preuves pour le calcul des constructions inductives. PhD thesis, Université de Nice-Sophia-Antipolis (2000)Google Scholar
  40. 40.
    Wiedijk, F.: Formal Proof Sketches. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 378–393. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  41. 41.
    Appel, A.: Modern Compiler Implementation in ML. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  42. 42.
    Rice, H.G.: Classes of recursively enumerable sets and their decision problems. Transactions of the American Mathematical Society 74(2), 358–366 (1953)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Hallgren, T., Ranta, A.: An Extensible Proof Text Editor. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 70–84. Springer, Heidelberg (2000), CrossRefGoogle Scholar
  44. 44.
    Dymetman, M., Lux, V., Ranta, A.: XML and multilingual document authoring: Convergent trends. In: Proc. Computational Linguistics COLING, Saarbrücken, Germany, pp. 243–249. International Committee on Computational Linguistics (2000)Google Scholar
  45. 45.
    Ranta, A.: Context-relative syntactic categories and the formalization of mathematical text. In: Berardi, S., Coppo, M. (eds.) TYPES 1995. LNCS, vol. 1158, pp. 231–248. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  46. 46.
    Ranta, A.: Structures grammaticales dans le français mathématique. Mathématiques, informatique et Sciences Humaines 138/139, 5-56–5-36 (1997)MathSciNetGoogle Scholar
  47. 47.
    Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Napoli (1984)zbMATHGoogle Scholar
  48. 48.
    Magnusson, L., Nordström, B.: The ALF proof editor and its proof engine. In: Types for Proofs and Programs, pp. 213–237. Springer, Heidelberg (1994)Google Scholar
  49. 49.
    Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software. LNCS, vol. 4334. Springer, Heidelberg (2007)Google Scholar
  50. 50.
    Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modelling with UML. Addison-Wesley, London (1999)Google Scholar
  51. 51.
    Kamp, H., Crouch, R., van Genabith, J., Cooper, R., Poesio, M., van Eijck, J., Jaspars, J., Pinkal, M., Vestre, E., Pulman, S.: Specification of linguistic coverage. FRACAS Deliverable D2 (1994)Google Scholar
  52. 52.
    Bringert, B.: Semantics of the GF Resource Grammar Library. Report, Chalmers University (2008),
  53. 53.
    Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowledge Representation. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 104–124. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  54. 54.
    Angelov, K., Ranta, A.: Implementing Controlled Languages in GF. In: Fuchs, N.E. (ed.) CNL 2009. LNCS, vol. 5972, pp. 82–101. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  55. 55.
    Dean, M., Schreiber, G.: OWL Web Ontology Language Reference (2004),
  56. 56.
    Gruzitis, N., Barzdins, G.: Towards a More Natural Multilingual Controlled Language Interface to OWL. In: 9th International Conference on Computational Semantics (IWCS), pp. 335–339 (2011),
  57. 57.
    Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of the International Conference on Formal Ontology in Information Systems (FOIS 2001), vol. 2001, pp. 2–9. ACM, New York (2001)Google Scholar
  58. 58.
    Humayoun, M., Raffalli, C.: MathNat - Mathematical Text in a Controlled Natural Language. Journal on Research in Computing Science 66 (2010)Google Scholar
  59. 59.
    Camilleri, J.J., Pace, G.J., Rosner.: In: Playing Nomic Using a Controlled Natural Language (2010),
  60. 60.
    Mitankin, P., Ilchev, A.: Knowledge Representation Infrastructure, MOLTO Deliverable D4.1(2010)

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Aarne Ranta
    • 1
  1. 1.Department of Computer Science and EngineeringChalmers University of Technology and University of GothenburgSweden

Personalised recommendations